Difference between revisions of "2012 IMO Problems/Problem 1"
(Created page with "Problem 1: Given triangle <math>ABC</math> the point <math>J</math> is the centre of the excircle opposite the vertex <math>A.</math> This excircle is tangent to the side <math>...") |
|||
Line 1: | Line 1: | ||
Problem 1: | Problem 1: | ||
− | Given triangle <math>ABC</math> the point <math>J</math> is the centre of the excircle opposite the vertex <math>A.</math> This excircle is tangent to the side <math>BC</math> at <math>M</math>, and to the lines <math>AB</math> and <math>AC</math> at <math>K</math> and <math>L</math>, respectively. The lines <math>LM</math> and <math>BJ</math> meet at <math>F</math>, and the lines <math>KM</math> and <math>CJ</math> meet at <math>G.</math> Let <math>S</math> be the point of intersection of the lines <math>AF</math> and <math>BC</math>, and let <math>T</math> be the point of intersection of the lines <math>AG</math> and <math>BC.</math> Prove that <math>M</math> is the midpoint of | + | Given triangle <math>ABC</math> the point <math>J</math> is the centre of the excircle opposite the vertex <math>A.</math> This excircle is tangent to the side <math>BC</math> at <math>M</math>, and to the lines <math>AB</math> and <math>AC</math> at <math>K</math> and <math>L</math>, respectively. The lines <math>LM</math> and <math>BJ</math> meet at <math>F</math>, and the lines <math>KM</math> and <math>CJ</math> meet at <math>G.</math> Let <math>S</math> be the point of intersection of the lines <math>AF</math> and <math>BC</math>, and let <math>T</math> be the point of intersection of the lines <math>AG</math> and <math>BC.</math> Prove that <math>M</math> is the midpoint of <math>ST</math>. |
Revision as of 16:43, 10 July 2012
Problem 1: Given triangle the point is the centre of the excircle opposite the vertex This excircle is tangent to the side at , and to the lines and at and , respectively. The lines and meet at , and the lines and meet at Let be the point of intersection of the lines and , and let be the point of intersection of the lines and Prove that is the midpoint of .