Difference between revisions of "1950 AHSME Problems/Problem 41"

(Created page with "==Problem== The least value of the function <math> ax^2\plus{}bx\plus{}c</math> with <math>a>0</math> is: <math>\textbf{(A)}\ -\dfrac{b}{a} \qquad \textbf{(B)}\ -\dfrac{b}{2a}...")
 
Line 8: Line 8:
 
\textbf{(D)}\ \dfrac{4ac-b^2}{4a}\qquad
 
\textbf{(D)}\ \dfrac{4ac-b^2}{4a}\qquad
 
\textbf{(E)}\ \text{None of these}</math>
 
\textbf{(E)}\ \text{None of these}</math>
 +
 +
==Solution==
 +
{{solution}}
 +
 +
==See Also==
 +
{{AHSME 50p box|year=1950|num-b=40|num-a=42}}
 +
 +
[[Category:Introductory Algebra Problems]]

Revision as of 07:39, 29 April 2012

Problem

The least value of the function $ax^2\plus{}bx\plus{}c$ (Error compiling LaTeX. Unknown error_msg) with $a>0$ is:

$\textbf{(A)}\ -\dfrac{b}{a} \qquad \textbf{(B)}\ -\dfrac{b}{2a} \qquad \textbf{(C)}\ b^2-4ac \qquad \textbf{(D)}\ \dfrac{4ac-b^2}{4a}\qquad \textbf{(E)}\ \text{None of these}$

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See Also

1950 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 40
Followed by
Problem 42
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
All AHSME Problems and Solutions