Difference between revisions of "1976 USAMO Problems/Problem 2"
(→Solution) |
(→Solution) |
||
Line 33: | Line 33: | ||
y &= \frac{1 - ar}{b}. | y &= \frac{1 - ar}{b}. | ||
\end{align*} </cmath> | \end{align*} </cmath> | ||
− | Now solving for <math>r</math> and <math>s</math> to get <math>r = \frac{1-by}{a}</math> and <math>s = \frac{bx}{a}</math> . Then since <math>r^s + s^2 = 1, \left(\frac{bx}{a}\right)^2 + \left(\frac{1-by}{a}\right)^2 = 1</math> which reduces to <math>x^2 + (y-1/b)^2 = \frac{a^2}{b^2}.</math> This equation defines a circle and is the locus of all intersection points <math>P</math>. Specifically, this locus is the circle | + | Now solving for <math>r</math> and <math>s</math> to get <math>r = \frac{1-by}{a}</math> and <math>s = \frac{bx}{a}</math> . Then since <math>r^s + s^2 = 1, \left(\frac{bx}{a}\right)^2 + \left(\frac{1-by}{a}\right)^2 = 1</math> which reduces to <math>x^2 + (y-1/b)^2 = \frac{a^2}{b^2}.</math> This equation defines a circle and is the locus of all intersection points <math>P</math>. Specifically, this locus is the circle with radius <math>|AO| \cdot \tan{\left(\frac{m \angle AOB}{2}\right)}</math> going through <math>A</math> and <math>B</math>. |
==See also== | ==See also== |
Revision as of 16:38, 22 February 2012
Problem
If and
are fixed points on a given circle and
is a variable diameter of the same circle, determine the locus of the point of intersection of lines
and
. You may assume that
is not a diameter.
Solution
WLOG, assume that the circle is the unit circle centered at the origin. Then the points and
have coordinates
and
respectively and
and
have coordinates
and
. Then we can find equations for the lines:
Solving these simultaneous equations gives coordinates for
in terms of
and
:
. These coordinates can be parametrized in Cartesian variables as follows:
Now solving for
and
to get
and
. Then since
which reduces to
This equation defines a circle and is the locus of all intersection points
. Specifically, this locus is the circle with radius
going through
and
.
See also
1976 USAMO (Problems • Resources) | ||
Preceded by Problem 1 |
Followed by Problem 3 | |
1 • 2 • 3 • 4 • 5 | ||
All USAMO Problems and Solutions |