Difference between revisions of "2012 AMC 12A Problems/Problem 16"
m (→Solution 1) |
Danielguo94 (talk | contribs) (→Solution 1) |
||
Line 8: | Line 8: | ||
===Solution 1=== | ===Solution 1=== | ||
− | Let <math>r</math> denote the radius of circle <math>C_1</math>. Note that quadrilateral <math>ZYOX</math> is cyclic. By | + | Let <math>r</math> denote the radius of circle <math>C_1</math>. Note that quadrilateral <math>ZYOX</math> is cyclic. By Ptolemy's Theorem, we have <math>11XY=13r+7r</math> and <math>XY=20r/11</math>. Let t be the measure of angle <math>YOX</math>. Since <math>YO=OX=r</math>, the law of cosines on triangle <math>YOX</math> gives us <math>\cos t =-79/121</math>. Again since <math>ZYOX</math> is cyclic, the measure of angle <math>YZX=180-t</math>. We apply the law of cosines to triangle <math>ZYX</math> so that <math>XY^2=7^2+13^2-2(7)(13)\cos(180-t)</math>. Since <math>\cos(180-t)=-\cos t=79/121</math> we obtain <math>XY^2=12000/121</math>. But<math> XY^2=400r^2/121</math> so that <math>r=\sqrt{30}</math>. <math>\boxed{E}</math>. |
===Solution 2=== | ===Solution 2=== |
Revision as of 14:41, 19 February 2012
Problem
Circle has its center lying on circle . The two circles meet at and . Point in the exterior of lies on circle and , , and . What is the radius of circle ?
Solution
Solution 1
Let denote the radius of circle . Note that quadrilateral is cyclic. By Ptolemy's Theorem, we have and . Let t be the measure of angle . Since , the law of cosines on triangle gives us . Again since is cyclic, the measure of angle . We apply the law of cosines to triangle so that . Since we obtain . But so that . .
Solution 2
Let us call the the radius of circle , and the radius of . Consider and . Both of these triangles have the same circumcircle (). From the Extended Law of Sines, we see that . Therefore, . We will now apply the Law of Cosines to and and get the equations
,
,
respectively. Because , this is a system of two equations and two variables. Solving for gives . .
See Also
2012 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 15 |
Followed by Problem 17 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |