Difference between revisions of "Modular arithmetic"

m (Applications: capitalization)
Line 25: Line 25:
 
=== Applications ===
 
=== Applications ===
  
Modular arithmetic is an extremely useful tool in mathematics competitions. It enables us to easily solve [[Linear diophantine equation]]s, and it often helps with other [[Diophantine equation | Diophantine equations]] as well.
+
Modular arithmetic is an extremely useful tool in mathematics competitions. It enables us to easily solve [[Linear Diophantine equation]]s, and it often helps with other [[Diophantine equation | Diophantine equations]] as well.
 
 
 
 
  
 
== Intermediate ==
 
== Intermediate ==

Revision as of 20:53, 23 June 2006

Modular arithmetic is a special type of arithmetic that involves only integers. Given integers $a$, $b$, and $n$, with $n > 0$, we say that $a$ is congruent to $b$ modulo $n$, or $a \equiv b$ (mod $n$), if the difference ${a - b}$ is divisible by $n$.

For a given positive integer $n$, the relation $a \equiv b$ (mod $n$) is an equivalence relation on the set of integers. This relation gives rise to an algebraic structure called the integers modulo $n$ (usually known as "the integers mod $n$," or $\mathbb{Z}_n$ for short). This structure gives us a useful tool for solving a wide range of number-theoretic problems, including finding solutions to Diophantine equations, testing whether certain large numbers are prime, and even some problems in cryptology.


Introductory

Useful Facts

Consider four integers ${a},{b},{c},{d}$ and a positive integer ${m}$ such that $a\equiv b\pmod {m}$ and $c\equiv d\pmod {m}$. In modular arithmetic, the following identities hold:

  • Addition: $a+c\equiv b+d\pmod {m}$.
  • Substraction: $a-c\equiv b-d\pmod {m}$.
  • Multiplication: $ac\equiv bd\pmod {m}$.
  • Division: $\frac{a}{e}\equiv \frac{b}{e}\pmod {\frac{m}{\gcd(m,e)}}$, where $e$ is a positive integer that divides ${a}$ and $b$.
  • Exponentiation: $a^e\equiv b^e\pmod {m}$ where $e$ is a positive integer.

Examples

  • ${7}\equiv {1} \pmod {2}$
  • $49^2\equiv 7^4\equiv (1)^4\equiv 1 \pmod {6}$
  • $7a\equiv 14\pmod {49}\implies a\equiv 2\pmod {7}$

Applications

Modular arithmetic is an extremely useful tool in mathematics competitions. It enables us to easily solve Linear Diophantine equations, and it often helps with other Diophantine equations as well.

Intermediate

Topics

See also