Difference between revisions of "2010 AMC 10A Problems/Problem 22"
(→Solution: Added a second solution) |
(added "see also" section) |
||
Line 10: | Line 10: | ||
===Solution 2=== | ===Solution 2=== | ||
We first figure out how many triangles can be created. This is done by choosing <math>3</math> lines out of the <math>8</math>, which is equivalent to <math>\binom{8}{3}=56</math>. However, some of these triangles have vertices on the circle. Therefore, the answer choice must be less than <math>56</math>. The only one that is so is <math>\boxed{(A)}</math>. | We first figure out how many triangles can be created. This is done by choosing <math>3</math> lines out of the <math>8</math>, which is equivalent to <math>\binom{8}{3}=56</math>. However, some of these triangles have vertices on the circle. Therefore, the answer choice must be less than <math>56</math>. The only one that is so is <math>\boxed{(A)}</math>. | ||
+ | |||
+ | ==See Also== | ||
+ | {{AMC10 box|year=2010|ab=A|num-b=20|num-a=22}} |
Revision as of 17:41, 20 December 2011
Problem
Eight points are chosen on a circle, and chords are drawn connecting every pair of points. No three chords intersect in a single point inside the circle. How many triangles with all three vertices in the interior of the circle are created?
Solution
Solution 1
To choose a chord, we know that two points must be chosen. This implies that for three chords to create a triangle and not intersect at a single point, six points need to be chosen. Therefore, the answer is which is equivalent to 28,
Solution 2
We first figure out how many triangles can be created. This is done by choosing lines out of the , which is equivalent to . However, some of these triangles have vertices on the circle. Therefore, the answer choice must be less than . The only one that is so is .
See Also
2010 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 20 |
Followed by Problem 22 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |