Difference between revisions of "2011 AMC 8 Problems/Problem 6"

Line 4: Line 4:
  
 
==Solution==
 
==Solution==
 +
 +
===Solution 1===
  
 
By [[PIE]], the number of adults who own both cars and motorcycles is <math>331+45-351=25.</math> Out of the <math>331</math> car owners, <math>25</math> of them own motorcycles and <math>331-25=\boxed{\textbf{(D)}\ 306}</math> of them don't.
 
By [[PIE]], the number of adults who own both cars and motorcycles is <math>331+45-351=25.</math> Out of the <math>331</math> car owners, <math>25</math> of them own motorcycles and <math>331-25=\boxed{\textbf{(D)}\ 306}</math> of them don't.
 +
 +
===Solution 2===
 +
 +
There are <math>351</math> total adults, and <math>45</math> own a motorcycle. The number of adults that don't own a motorcycle is <math>351 - 45 = 306</math>. Since everyone owns a car or motorcycle, one who doesn't own a motorcycle owns a car, so the answer is <math>\boxed{\textbf{(D)}\ 306}</math>.
  
 
==See Also==
 
==See Also==
 
{{AMC8 box|year=2011|num-b=5|num-a=7}}
 
{{AMC8 box|year=2011|num-b=5|num-a=7}}

Revision as of 14:15, 28 November 2011

In a town of $351$ adults, every adult owns a car, motorcycle, or both. If $331$ adults own cars and $45$ adults own motorcycles, how many of the car owners do not own a motorcycle?

$\textbf{(A)}\ 20 \qquad \textbf{(B)}\ 25 \qquad \textbf{(C)}\ 45 \qquad \textbf{(D)}\ 306 \qquad \textbf{(E)}\ 351$

Solution

Solution 1

By PIE, the number of adults who own both cars and motorcycles is $331+45-351=25.$ Out of the $331$ car owners, $25$ of them own motorcycles and $331-25=\boxed{\textbf{(D)}\ 306}$ of them don't.

Solution 2

There are $351$ total adults, and $45$ own a motorcycle. The number of adults that don't own a motorcycle is $351 - 45 = 306$. Since everyone owns a car or motorcycle, one who doesn't own a motorcycle owns a car, so the answer is $\boxed{\textbf{(D)}\ 306}$.

See Also

2011 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions