Difference between revisions of "2010 AMC 10B Problems/Problem 19"
(Blanked the page) |
|||
Line 1: | Line 1: | ||
+ | == Problem == | ||
+ | A circle with center <math>O</math> has area <math>156\pi</math>. Triangle <math>ABC</math> is equilateral, <math>\overbar{BC}</math> is a chord on the circle, <math>OA = 4\sqrt{3}</math>, and point <math>O</math> is outside <math>\triangle ABC</math>. What is the side length of <math>\triangle ABC</math>? | ||
+ | |||
+ | <math>\mathrm{(A)}\ 2\sqrt{3} \qquad \mathrm{(B)}\ 6 \qquad \mathrm{(C)}\ 4\sqrt{3} \qquad \mathrm{(D)}\ 12 \qquad \mathrm{(E)}\ 18</math> | ||
+ | |||
+ | ==Solution== | ||
+ | The formula for the area of a circle is <math>\pi r^2</math> so the radius of this circle is <math>\sqrt{156}.</math> | ||
+ | |||
+ | Because <math>OA=4\sqrt{3} < \sqrt{156}, A</math> must be in the interior of circle <math>O.</math> | ||
+ | |||
+ | <center><asy> | ||
+ | unitsize(3mm); | ||
+ | defaultpen(linewidth(.8pt)+fontsize(11pt)); | ||
+ | dotfactor=3; | ||
+ | |||
+ | real r=sqrt(156); | ||
+ | pair A=(0,sqrt(48)), B=(-3,sqrt(147)), C=(3,sqrt(147)); | ||
+ | pair O=(0,0); | ||
+ | pair X=(0,7sqrt(3)); | ||
+ | path outer=Circle(O,r); | ||
+ | draw(outer); | ||
+ | draw(A--B--C--cycle); | ||
+ | draw(O--X); draw(O--B); | ||
+ | |||
+ | pair[] ps={A,B,C,O,X}; | ||
+ | dot(ps); | ||
+ | |||
+ | label("$A$",A,SE); | ||
+ | label("$B$",B,NW); | ||
+ | label("$C$",C,NE); | ||
+ | label("$O$",O,S); | ||
+ | label("$X$",X,N); | ||
+ | label("$s$",A--C,SE); | ||
+ | label("$\frac{s}{2}$",B--X,N); | ||
+ | label("$\frac{s\sqrt{3}}{2}$",A--X,NE); | ||
+ | label("$\sqrt{156}$",O--B,SW); | ||
+ | label("$4\sqrt{3}$",A--O,E); | ||
+ | </asy></center> | ||
+ | |||
+ | Let <math>s</math> be the unknown value, the sidelength of the triangle, and let <math>X</math> be the point on <math>BC</math> where <math>OX \perp BC.</math> Since <math>\triangle ABC</math> is equilateral, <math>BX=\frac{s}{2}</math> and <math>AX=\frac{s\sqrt{3}}{2}.</math> We are given <math>AO=4\sqrt{3}.</math> Use the [[Pythagorean Theorem]] and solve for <math>s.</math> | ||
+ | |||
+ | <cmath>\begin{align*} | ||
+ | (\sqrt{156})^2 &= \left(\frac{s}{2}\right)^2 + \left( \frac{s\sqrt{3}}{2} + 4\sqrt{3} \right)^2\\ | ||
+ | 156 &= \frac14s^2 + \frac34s^2 + 12s + 48\\ | ||
+ | 0 &= s^2 + 12s - 108\\ | ||
+ | 0 &= (s-6)(s+18)\\ | ||
+ | s &= \boxed{\textbf{(B)}\ 6} | ||
+ | \end{align*} </cmath> | ||
+ | |||
+ | ==See Also== | ||
+ | {{AMC10 box|year=2010|ab=B|num-b=18|num-a=20}} |
Revision as of 23:21, 25 November 2011
Problem
A circle with center has area . Triangle is equilateral, $\overbar{BC}$ (Error compiling LaTeX. Unknown error_msg) is a chord on the circle, , and point is outside . What is the side length of ?
Solution
The formula for the area of a circle is so the radius of this circle is
Because must be in the interior of circle
Let be the unknown value, the sidelength of the triangle, and let be the point on where Since is equilateral, and We are given Use the Pythagorean Theorem and solve for
See Also
2010 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 18 |
Followed by Problem 20 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |