Difference between revisions of "2010 AMC 10B Problems/Problem 19"

(Blanked the page)
Line 1: Line 1:
 +
== Problem ==
  
 +
A circle with center <math>O</math> has area <math>156\pi</math>. Triangle <math>ABC</math> is equilateral, <math>\overbar{BC}</math> is a chord on the circle, <math>OA = 4\sqrt{3}</math>, and point <math>O</math> is outside <math>\triangle ABC</math>. What is the side length of <math>\triangle ABC</math>?
 +
 +
<math>\mathrm{(A)}\ 2\sqrt{3} \qquad \mathrm{(B)}\ 6 \qquad \mathrm{(C)}\ 4\sqrt{3} \qquad \mathrm{(D)}\ 12 \qquad \mathrm{(E)}\ 18</math>
 +
 +
==Solution==
 +
The formula for the area of a circle is <math>\pi r^2</math> so the radius of this circle is <math>\sqrt{156}.</math>
 +
 +
Because <math>OA=4\sqrt{3} < \sqrt{156}, A</math> must be in the interior of circle <math>O.</math>
 +
 +
<center><asy>
 +
unitsize(3mm);
 +
defaultpen(linewidth(.8pt)+fontsize(11pt));
 +
dotfactor=3;
 +
 +
real r=sqrt(156);
 +
pair A=(0,sqrt(48)), B=(-3,sqrt(147)), C=(3,sqrt(147));
 +
pair O=(0,0);
 +
pair X=(0,7sqrt(3));
 +
path outer=Circle(O,r);
 +
draw(outer);
 +
draw(A--B--C--cycle);
 +
draw(O--X); draw(O--B);
 +
 +
pair[] ps={A,B,C,O,X};
 +
dot(ps);
 +
 +
label("$A$",A,SE);
 +
label("$B$",B,NW);
 +
label("$C$",C,NE);
 +
label("$O$",O,S);
 +
label("$X$",X,N);
 +
label("$s$",A--C,SE);
 +
label("$\frac{s}{2}$",B--X,N);
 +
label("$\frac{s\sqrt{3}}{2}$",A--X,NE);
 +
label("$\sqrt{156}$",O--B,SW);
 +
label("$4\sqrt{3}$",A--O,E);
 +
</asy></center>
 +
 +
Let <math>s</math> be the unknown value, the sidelength of the triangle, and let <math>X</math> be the point on <math>BC</math> where <math>OX \perp BC.</math> Since <math>\triangle ABC</math> is equilateral, <math>BX=\frac{s}{2}</math> and <math>AX=\frac{s\sqrt{3}}{2}.</math> We are given <math>AO=4\sqrt{3}.</math> Use the [[Pythagorean Theorem]] and solve for <math>s.</math>
 +
 +
<cmath>\begin{align*}
 +
(\sqrt{156})^2 &= \left(\frac{s}{2}\right)^2 + \left( \frac{s\sqrt{3}}{2} + 4\sqrt{3} \right)^2\\
 +
156 &= \frac14s^2 + \frac34s^2 + 12s + 48\\
 +
0 &= s^2 + 12s - 108\\
 +
0 &= (s-6)(s+18)\\
 +
s &= \boxed{\textbf{(B)}\ 6}
 +
\end{align*} </cmath>
 +
 +
==See Also==
 +
{{AMC10 box|year=2010|ab=B|num-b=18|num-a=20}}

Revision as of 23:21, 25 November 2011

Problem

A circle with center $O$ has area $156\pi$. Triangle $ABC$ is equilateral, $\overbar{BC}$ (Error compiling LaTeX. Unknown error_msg) is a chord on the circle, $OA = 4\sqrt{3}$, and point $O$ is outside $\triangle ABC$. What is the side length of $\triangle ABC$?

$\mathrm{(A)}\ 2\sqrt{3} \qquad \mathrm{(B)}\ 6 \qquad \mathrm{(C)}\ 4\sqrt{3} \qquad \mathrm{(D)}\ 12 \qquad \mathrm{(E)}\ 18$

Solution

The formula for the area of a circle is $\pi r^2$ so the radius of this circle is $\sqrt{156}.$

Because $OA=4\sqrt{3} < \sqrt{156}, A$ must be in the interior of circle $O.$

[asy] unitsize(3mm); defaultpen(linewidth(.8pt)+fontsize(11pt)); dotfactor=3;  real r=sqrt(156); pair A=(0,sqrt(48)), B=(-3,sqrt(147)), C=(3,sqrt(147)); pair O=(0,0); pair X=(0,7sqrt(3)); path outer=Circle(O,r); draw(outer); draw(A--B--C--cycle); draw(O--X); draw(O--B);  pair[] ps={A,B,C,O,X}; dot(ps);  label("$A$",A,SE); label("$B$",B,NW); label("$C$",C,NE); label("$O$",O,S); label("$X$",X,N); label("$s$",A--C,SE); label("$\frac{s}{2}$",B--X,N); label("$\frac{s\sqrt{3}}{2}$",A--X,NE); label("$\sqrt{156}$",O--B,SW); label("$4\sqrt{3}$",A--O,E); [/asy]

Let $s$ be the unknown value, the sidelength of the triangle, and let $X$ be the point on $BC$ where $OX \perp BC.$ Since $\triangle ABC$ is equilateral, $BX=\frac{s}{2}$ and $AX=\frac{s\sqrt{3}}{2}.$ We are given $AO=4\sqrt{3}.$ Use the Pythagorean Theorem and solve for $s.$

\begin{align*} (\sqrt{156})^2 &= \left(\frac{s}{2}\right)^2 + \left( \frac{s\sqrt{3}}{2} + 4\sqrt{3} \right)^2\\ 156 &= \frac14s^2 + \frac34s^2 + 12s + 48\\ 0 &= s^2 + 12s - 108\\ 0 &= (s-6)(s+18)\\ s &= \boxed{\textbf{(B)}\ 6} \end{align*}

See Also

2010 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions