Difference between revisions of "2011 AMC 12B Problems/Problem 24"
Danielguo94 (talk | contribs) (→Solution) |
Danielguo94 (talk | contribs) (→Solution) |
||
Line 32: | Line 32: | ||
Hence, answer is <math>8\sqrt{2}</math>. | Hence, answer is <math>8\sqrt{2}</math>. | ||
− | |||
== See also == | == See also == | ||
{{AMC12 box|year=2011|num-b=23|num-a=25|ab=B}} | {{AMC12 box|year=2011|num-b=23|num-a=25|ab=B}} |
Revision as of 21:30, 26 September 2011
Problem
Let . What is the minimum perimeter amont all the -sided polygons in the complex plane whose vertices are precisely the zeros of ?
Solution
Answer: (B)
First of all, we need to find all such that
So or
or
Now we have a solution at if we look at them in polar coordinate, further more, the 8-gon is symmetric (it is a regular octagon) . So we only need to find the side length of one and multiply by .
So answer distance from to
Side length
Hence, answer is .
See also
2011 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |