Difference between revisions of "1996 AHSME Problems"
Talkinaway (talk | contribs) (→Solution) |
Talkinaway (talk | contribs) (→Problem) |
||
Line 43: | Line 43: | ||
[[1996 AHSME Problems/Problem 5|Solution]] | [[1996 AHSME Problems/Problem 5|Solution]] | ||
− | ==Problem== | + | ==Problem 6== |
If <math> f(x) = x^{(x+1)}(x+2)^{(x+3)} </math>, then <math> f(0)+f(-1)+f(-2)+f(-3) = </math> | If <math> f(x) = x^{(x+1)}(x+2)^{(x+3)} </math>, then <math> f(0)+f(-1)+f(-2)+f(-3) = </math> |
Revision as of 19:42, 18 August 2011
Contents
- 1 Problem 1
- 2 Problem 2
- 3 Problem 3
- 4 Problem 4
- 5 Problem 5
- 6 Problem 6
- 7 Problem 7
- 8 Problem 8
- 9 Problem 9
- 10 Problem 10
- 11 Problem 11
- 12 Problem 12
- 13 Problem 13
- 14 Problem 14
- 15 Problem 15
- 16 Problem 16
- 17 Problem 17
- 18 Problem 18
- 19 Problem 19
- 20 Problem 20
- 21 Problem 21
- 22 Problem 22
- 23 Problem 23
- 24 Problem 24
- 25 Problem 25
- 26 Problem 26
- 27 Problem 27
- 28 Problem 28
- 29 Problem 29
- 30 Problem 30
Problem 1
The addition below is incorrect. What is the largest digit that can be changed to make the addition correct?
$\begin{tabular}{r}&\ \texttt{6 4 1}\\ \texttt{8 5 2} &+\texttt{9 7 3}\\ \hline \texttt{2 4 5 6}\end{tabular}$ (Error compiling LaTeX. Unknown error_msg)
Problem 2
Each day Walter gets dollars for doing his chores or dollars for doing them exceptionally well. After days of doing his chores daily, Walter has received a total of dollars. On how many days did Walter do them exceptionally well?
Problem 3
Problem 4
Six numbers from a list of nine integers are and . The largest possible value of the median of all nine numbers in this list is
$\text{(A)}\ 5\qquad\text{(B)}\6\qquad\text{(C)}\ 7\qquad\text{(D)}\ 8\qquad\text{(E)}\ 9$ (Error compiling LaTeX. Unknown error_msg)
Problem 5
Given that , which of the following is the largest?
Problem 6
If , then