Difference between revisions of "2002 AMC 10B Problems/Problem 10"

(box, solution)
(Redirected page to 2002 AMC 12B Problems/Problem 6)
 
Line 1: Line 1:
== Problem ==
+
#REDIRECT[[2002 AMC 12B Problems/Problem 6]]
 
 
Suppose that <math>a</math> and <math>b</math> are nonzero real numbers, and that the equation <math>x^2+ax+b=0</math> has positive solutions <math>a</math> and <math>b</math>. Then the pair <math>(a,b)</math> is
 
 
 
<math> \mathrm{(A) \ } (-2,1)\qquad \mathrm{(B) \ } (-1,2)\qquad \mathrm{(C) \ } (1,-2)\qquad \mathrm{(D) \ } (2,-1)\qquad \mathrm{(E) \ } (4,4) </math>
 
 
 
== Solution ==
 
From [[Vieta's Formulas]], <math>ab=b</math> and <math>a+b=-a</math>. Since <math>b\ne 0</math>, we have <math>a=1</math>, and hence <math>b=-2</math>. Our answer is <math>\boxed{(1,-2)\Rightarrow\text{(C)}}</math>.
 
 
 
==See Also==
 
{{AMC10 box|year=2002|ab=B|num-b=9|num-a=11}}
 
 
 
[[Category:Introductory Algebra Problems]]
 

Latest revision as of 17:01, 28 July 2011