Difference between revisions of "2005 AMC 12B Problems/Problem 15"
Huangkevin57 (talk | contribs) |
m |
||
Line 11: | Line 11: | ||
== Solution == | == Solution == | ||
− | 221 can be written as the sum of eight two-digit numbers, | + | <math>221</math> can be written as the sum of eight two-digit numbers, let's say <math>\overline{ae}</math>, <math>\overline{bf}</math>, <math>\overline{cg}</math>, and <math>\overline{dh}</math>. Then <math>221= 10(a+b+c+d)+(e+f+g+h)</math>. The last digit of <math>221</math> is <math>1</math>, and <math>10(a+b+c+d)</math> won't affect the units digits, so <math>(e+f+g+h)</math> must end with <math>1</math>. The smallest value <math>(e+f+g+h)</math> can have is <math>(1+2+3+4)=10</math>, and the greatest value is <math>(6+7+8+9)=30</math>. Therefore, <math>(e+f+g+h)</math> must equal <math>11</math> or <math>21</math>. |
− | Case 1: (e+f+g+h)=11 | + | Case 1: <math>(e+f+g+h)=11</math> |
− | |||
− | Case 2: (e+f+g+h)=21 | + | The only distinct positive integers that can add up to <math>11</math> is <math>(1+2+3+5)</math>. So, <math>a</math>,<math>b</math>,<math>c</math>, and <math>d</math> must include four of the five numbers <math>(4,6,7,8,9)</math>. We have <math>10(a+b+c+d)=221-11=210</math>, or <math>a+b+c+d=21</math>. We can add all of <math>4+6+7+8+9=34</math>, and try subtracting one number to get to <math>21</math>, but to no avail. Therefore, <math>(e+f+g+h)</math> cannot add up to <math>11</math>. |
− | Checking all the values for e,f,g,h each individually may be time-consuming, instead of only having 1 solution like | + | |
+ | Case 2: <math>(e+f+g+h)=21</math> | ||
+ | |||
+ | Checking all the values for <math>e</math>,<math>f</math>,<math>g</math>,and <math>h</math> each individually may be time-consuming, instead of only having <math>1</math> solution like Case 1. We can try a different approach by looking at <math>(a+b+c+d)</math> first. If <math>(e+f+g+h)=21</math>, <math>10(a+b+c+d)=221-21=200</math>, or <math>(a+b+c+d)=20</math>. That means <math>(a+b+c+d)+(e+f+g+h)=21+20=41</math>. We know <math>(1+2+3+4+5+6+7+8+9)=45</math>, so the missing digit is <math>45-41=\boxed{\mathrm{(D)}\ 4}</math> | ||
== See also == | == See also == | ||
− | + | {{AMC12 box|year=2005|ab=B|num-b=14|num-a=16}} |
Revision as of 13:50, 4 July 2011
Problem
The sum of four two-digit numbers is . None of the eight digits is and no two of them are the same. Which of the following is not included among the eight digits?
Solution
can be written as the sum of eight two-digit numbers, let's say , , , and . Then . The last digit of is , and won't affect the units digits, so must end with . The smallest value can have is , and the greatest value is . Therefore, must equal or .
Case 1:
The only distinct positive integers that can add up to is . So, ,,, and must include four of the five numbers . We have , or . We can add all of , and try subtracting one number to get to , but to no avail. Therefore, cannot add up to .
Case 2:
Checking all the values for ,,,and each individually may be time-consuming, instead of only having solution like Case 1. We can try a different approach by looking at first. If , , or . That means . We know , so the missing digit is
See also
2005 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 14 |
Followed by Problem 16 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |