Difference between revisions of "1999 AHSME Problems/Problem 7"

m (Added solution prompt tag)
(See also box)
Line 1: Line 1:
 
{{solution}}
 
{{solution}}
 +
 +
==Problem==
  
 
What is the largest number of acute angles that a convex hexagon can have?
 
What is the largest number of acute angles that a convex hexagon can have?
  
 
<math> \textbf{(A)}\  2 \qquad \textbf{(B)}\  3 \qquad \textbf{(C)}\  4\qquad \textbf{(D)}\ 5 \qquad \textbf{(E)}\  6</math>
 
<math> \textbf{(A)}\  2 \qquad \textbf{(B)}\  3 \qquad \textbf{(C)}\  4\qquad \textbf{(D)}\ 5 \qquad \textbf{(E)}\  6</math>
 +
 +
==See Also==
 +
 +
{{AMC12 box|year=2009|ab=A|num-b=6|num-a=78}

Revision as of 19:19, 2 June 2011

This problem needs a solution. If you have a solution for it, please help us out by adding it.

Problem

What is the largest number of acute angles that a convex hexagon can have?

$\textbf{(A)}\  2 \qquad \textbf{(B)}\  3 \qquad \textbf{(C)}\  4\qquad \textbf{(D)}\ 5 \qquad \textbf{(E)}\  6$

See Also

{{AMC12 box|year=2009|ab=A|num-b=6|num-a=78}