Difference between revisions of "Mass points"
(→External links) |
m (spelling mistake :D) |
||
Line 1: | Line 1: | ||
'''Mass points''' is a method in [[Euclidean geometry]] that can greatly simplify the proofs of many theorems. In essence, it involves using a local [[coordinate system]] to identify [[point]]s by the [[ratio]]s into which they divide [[line segment]]s. Mass points are generalized by [[barycentric coordinates]]. | '''Mass points''' is a method in [[Euclidean geometry]] that can greatly simplify the proofs of many theorems. In essence, it involves using a local [[coordinate system]] to identify [[point]]s by the [[ratio]]s into which they divide [[line segment]]s. Mass points are generalized by [[barycentric coordinates]]. | ||
− | Mass point geometry involves systematically assigning 'weights' to points, which can then be used to deduce lengths, using the fact that the lengths must be inversly proportional to their weight (just like a balanced lever). Additionally, the point dividing the line has a mass equal to the sum of the weights on either end of the line (like the | + | Mass point geometry involves systematically assigning 'weights' to points, which can then be used to deduce lengths, using the fact that the lengths must be inversly proportional to their weight (just like a balanced lever). Additionally, the point dividing the line has a mass equal to the sum of the weights on either end of the line (like the fulcrum of a lever). |
== Examples == | == Examples == |
Revision as of 12:18, 14 March 2011
Mass points is a method in Euclidean geometry that can greatly simplify the proofs of many theorems. In essence, it involves using a local coordinate system to identify points by the ratios into which they divide line segments. Mass points are generalized by barycentric coordinates.
Mass point geometry involves systematically assigning 'weights' to points, which can then be used to deduce lengths, using the fact that the lengths must be inversly proportional to their weight (just like a balanced lever). Additionally, the point dividing the line has a mass equal to the sum of the weights on either end of the line (like the fulcrum of a lever).
Examples
Consider a triangle with its three medians drawn, with the intersection points being corresponding to and respectively. Thus, if we label point with a weight of , must also have a weight of since and are equidistant to . By the same process, we find must also have a weight of 1. Now, since and both have a weight of , must have a weight of (as is true for and ). Thus, if we label the centroid , we can deduce that is - the inverse ratio of their weights.
External links
- http://mathcircle.berkeley.edu/archivedocs/2007_2008/lectures/0708lecturesps/MassPointsBMC07.ps
- http://mathcircle.berkeley.edu/archivedocs/1999_2000/lectures/9900lecturespdf/mpgeo.pdf
This article is a stub. Help us out by expanding it.