Difference between revisions of "2010 AMC 10B Problems/Problem 13"

(Solution)
(Solution)
Line 18: Line 18:
  
 
<math>
 
<math>
2x-|60-2x|=x,
+
2x-|60-2x|=x
 +
</math>
 +
 
 +
<math>
 
x=|60-2x|
 
x=|60-2x|
 
</math>
 
</math>
Line 25: Line 28:
 
   
 
   
 
<math>
 
<math>
x=60-2x,
+
x=60-2x
3x=60,
+
</math>
 +
 
 +
<math>
 +
3x=60
 +
</math>
 +
 
 +
<math>
 
x=20
 
x=20
 
</math>
 
</math>
Line 33: Line 42:
  
 
<math>
 
<math>
-x=60-2x,
+
-x=60-2x
 +
</math>
 +
 
 +
<math>
 
x=60
 
x=60
 
</math>
 
</math>
Line 40: Line 52:
  
 
<math>
 
<math>
2x-|60-2x|=-x,
+
2x-|60-2x|=-x
 +
</math>
 +
 
 +
<math>
 
3x=|60-2x|
 
3x=|60-2x|
 
</math>
 
</math>
Line 47: Line 62:
  
 
<math>
 
<math>
3x=60-2x,
+
3x=60-2x
5x=60,
+
</math>
 +
 
 +
<math>
 +
5x=60
 +
</math>
 +
 
 +
<math>
 
x=12
 
x=12
 
</math>
 
</math>
Line 55: Line 76:
  
 
<math>
 
<math>
-3x=60-2x,
+
-3x=60-2x
-x=60,
+
</math>
 +
 
 +
<math>
 +
-x=60
 +
</math>
 +
 
 +
<math>
 
x=-60
 
x=-60
 
</math>
 
</math>
  
 
Since an absolute value cannot be negative, we exclude <math>x=-60</math>. The answer is <math>20+60+12= \boxed{\mathrm {(C)}\ 92}</math>
 
Since an absolute value cannot be negative, we exclude <math>x=-60</math>. The answer is <math>20+60+12= \boxed{\mathrm {(C)}\ 92}</math>

Revision as of 20:23, 24 January 2011

Problem

What is the sum of all the solutions of $x = \left|2x-|60-2x|\right|$?

$\mathrm{(A)}\ 32 \qquad \mathrm{(B)}\ 60 \qquad \mathrm{(C)}\ 92 \qquad \mathrm{(D)}\ 120 \qquad \mathrm{(E)}\ 124$

Solution

Case 1:

$2x-|60-2x|=x$

$x=|60-2x|$

Case 1a:

$x=60-2x$

$3x=60$

$x=20$

Case 1b:

$-x=60-2x$

$x=60$

Case 2:

$2x-|60-2x|=-x$

$3x=|60-2x|$

Case 2a:

$3x=60-2x$

$5x=60$

$x=12$

Case 2b:

$-3x=60-2x$

$-x=60$

$x=-60$

Since an absolute value cannot be negative, we exclude $x=-60$. The answer is $20+60+12= \boxed{\mathrm {(C)}\ 92}$