Difference between revisions of "2010 AMC 10B Problems/Problem 13"

(Solution)
Line 19: Line 19:
 
<math>
 
<math>
 
2x-|60-2x|=x
 
2x-|60-2x|=x
 +
 
x=|60-2x|
 
x=|60-2x|
 +
 
</math>
 
</math>
  
Line 26: Line 28:
 
<math>
 
<math>
 
x=60-2x
 
x=60-2x
 +
 
3x=60
 
3x=60
 +
 
x=20
 
x=20
 
</math>
 
</math>
Line 41: Line 45:
 
<math>
 
<math>
 
2x-|60-2x|=-x
 
2x-|60-2x|=-x
 +
 
3x=|60-2x|
 
3x=|60-2x|
 
</math>
 
</math>
Line 48: Line 53:
 
<math>
 
<math>
 
3x=60-2x
 
3x=60-2x
 +
 
5x=60
 
5x=60
 +
 
x=12
 
x=12
 
</math>
 
</math>
Line 56: Line 63:
 
<math>
 
<math>
 
-3x=60-2x
 
-3x=60-2x
 +
 
-x=60
 
-x=60
 +
 
x=-60
 
x=-60
 
</math>
 
</math>
  
 
Since an absolute value cannot be negative, we exclude <math>x=-60</math>. The answer is <math>20+60+12=92</math>
 
Since an absolute value cannot be negative, we exclude <math>x=-60</math>. The answer is <math>20+60+12=92</math>

Revision as of 20:13, 24 January 2011

Problem

What is the sum of all the solutions of $x = \left|2x-|60-2x|\right|$?

$\mathrm{(A)}\ 32 \qquad \mathrm{(B)}\ 60 \qquad \mathrm{(C)}\ 92 \qquad \mathrm{(D)}\ 120 \qquad \mathrm{(E)}\ 124$

Solution

Case 1:

$2x-|60-2x|=x

x=|60-2x|$ (Error compiling LaTeX. Unknown error_msg)

Case 1a:

$x=60-2x

3x=60

x=20$ (Error compiling LaTeX. Unknown error_msg)

Case 1b:

$-x=60-2x x=60$

Case 2:

$2x-|60-2x|=-x

3x=|60-2x|$ (Error compiling LaTeX. Unknown error_msg)

Case 2a:

$3x=60-2x

5x=60

x=12$ (Error compiling LaTeX. Unknown error_msg)

Case 2b:

$-3x=60-2x

-x=60

x=-60$ (Error compiling LaTeX. Unknown error_msg)

Since an absolute value cannot be negative, we exclude $x=-60$. The answer is $20+60+12=92$