Difference between revisions of "Vornicu-Schur Inequality"
(→External Links) |
(→Statement) |
||
Line 6: | Line 6: | ||
Schur's Inequality follows from Vornicu-Schur by setting <math>x=a</math>, <math>y=b</math>, <math>z=c</math>, <math>k = 1</math>, and <math>f(m) = m^r</math>. | Schur's Inequality follows from Vornicu-Schur by setting <math>x=a</math>, <math>y=b</math>, <math>z=c</math>, <math>k = 1</math>, and <math>f(m) = m^r</math>. | ||
+ | |||
+ | The most widely used form of Vornicu-Schur is | ||
+ | |||
+ | Let <math>a \geq b \geq c</math> be real numbers, and let <math>x,y,z \geq 0</math>. Then if <math>x+z\geq y</math> then the following inequality is true | ||
+ | <cmath> x(a-b)(a-c) + y(b-c)(b-a) + z (c-a)(c-b) \geq 0 . </cmath> | ||
+ | |||
==References== | ==References== | ||
*Vornicu, Valentin; ''Olimpiada de Matematica... de la provocare la experienta''; GIL Publishing House; Zalau, Romania.</ref> | *Vornicu, Valentin; ''Olimpiada de Matematica... de la provocare la experienta''; GIL Publishing House; Zalau, Romania.</ref> |
Revision as of 14:54, 4 September 2010
The Vornicu-Schur Inequality is a generalization of Schur's Inequality discovered by the Romanian mathematician Valentin Vornicu.
Statement
Consider real numbers such that and either or . Let be a positive integer and let be a function from the reals to the nonnegative reals that is either convex or monotonic. Then
Schur's Inequality follows from Vornicu-Schur by setting , , , , and .
The most widely used form of Vornicu-Schur is
Let be real numbers, and let . Then if then the following inequality is true
References
- Vornicu, Valentin; Olimpiada de Matematica... de la provocare la experienta; GIL Publishing House; Zalau, Romania.</ref>