Difference between revisions of "2010 USAMO Problems/Problem 1"
(Created page with '==Problem== Let <math>AXYZB</math> be a convex pentagon inscribed in a semicircle of diameter <math>AB</math>. Denote by <math>P, Q, R, S</math> the feet of the perpendiculars fr…') |
(→Solution) |
||
Line 14: | Line 14: | ||
<asy> | <asy> | ||
import olympiad; | import olympiad; | ||
− | + | import markers; | |
− | |||
void langle(picture p=currentpicture, | void langle(picture p=currentpicture, | ||
− | + | pair A, pair B, pair C, string l="", real r=40, | |
+ | int n=1, int marks = 0) | ||
{ | { | ||
− | + | marker m; | |
− | + | string sl = "$\scriptstyle{" + l + "}$"; | |
− | + | if (marks == 0) { | |
− | + | m = nomarker; | |
− | + | } else { | |
+ | m = marker(markinterval(stickframe(n=marks, 2mm),true)); | ||
+ | } | ||
+ | markangle(p, Label(sl), radius=r, n=n, A, B, C, m); | ||
} | } | ||
picture p; | picture p; | ||
+ | unitsize(1inch); | ||
real r = 1.75; | real r = 1.75; | ||
pair A = r * plain.W; dot(p, A); label(p, "$A$", A, plain.W); | pair A = r * plain.W; dot(p, A); label(p, "$A$", A, plain.W); | ||
Line 33: | Line 37: | ||
pair O = (0,0); dot(p, O); label(p, "$O$", O, plain.S); | pair O = (0,0); dot(p, O); label(p, "$O$", O, plain.S); | ||
− | real alpha = 22.5; | + | // Semi-circle with diameter A--B |
− | real beta = 15; | + | path C=arc(O, r, 0, 180)--cycle; draw(p, C); |
− | real delta = 30; | + | |
− | real gamma = 90 - alpha - beta - delta; // angle XBY | + | real alpha = 22.5; // angle BAZ |
+ | real beta = 15; // angble ABX | ||
+ | real delta = 30; // angle ZAY | ||
+ | real gamma = 90 - alpha - beta - delta; // angle XBY | ||
// Points X, Y, Z | // Points X, Y, Z | ||
Line 43: | Line 50: | ||
pair Z = r * dir(2*alpha); dot(p, Z); label(p, "$Z$", Z, plain.NE); | pair Z = r * dir(2*alpha); dot(p, Z); label(p, "$Z$", Z, plain.NE); | ||
− | langle(p, B, A, Z, "\alpha"); | + | // Angle labels |
− | langle(p, X, B, A, "\beta" | + | langle(p, B, A, Z, "\alpha" ); |
− | + | langle(p, X, B, A, "\beta", n=2); | |
− | langle(p, Y, | + | langle(p, Y, A, X, "\gamma", marks=1); |
− | langle(p, Y, | + | langle(p, Y, B, X, "\gamma", marks=1); |
− | langle(p, Z, A, Y, "\delta"); | + | langle(p, Z, A, Y, "\delta", marks=2); |
− | langle(p, Z, B, Y, "\delta" | + | langle(p, Z, B, Y, "\delta", marks=2); |
− | |||
− | |||
− | |||
+ | // Perpendiculars from Y | ||
pair Q = foot(Y, B, X); | pair Q = foot(Y, B, X); | ||
dot(p, Q); label(p, "$Q$", Q, plain.SW); | dot(p, Q); label(p, "$Q$", Q, plain.SW); | ||
Line 69: | Line 74: | ||
draw(p, Y--S); | draw(p, Y--S); | ||
draw(p, rightanglemark(Z, S, Y, 3)); | draw(p, rightanglemark(Z, S, Y, 3)); | ||
− | |||
pair R = foot(Y, B, Z); | pair R = foot(Y, B, Z); | ||
Line 77: | Line 81: | ||
draw(p, rightanglemark(B, R, Y, 3)); | draw(p, rightanglemark(B, R, Y, 3)); | ||
− | // | + | // Angle labels |
+ | langle(p, R, S, Y, "\alpha+\delta", r=23); | ||
+ | langle(p, Y, Q, P, "\beta+\gamma", r=23); | ||
+ | |||
+ | // Right triangles AB{X,Y,Z} | ||
draw(p, A--Y); draw(p, A--Z); | draw(p, A--Y); draw(p, A--Z); | ||
draw(p, B--X); draw(p, B--Y); | draw(p, B--X); draw(p, B--Y); | ||
Line 88: | Line 96: | ||
dot(p, T); label(p, "$T$", T, plain.S); | dot(p, T); label(p, "$T$", T, plain.S); | ||
− | + | // Label for sought angle "chi" | |
− | + | langle(p, R, T, P, "\chi", r=15); | |
− | draw(p, P--T); | + | |
− | draw(p, R--T) | + | // Ligher lines for PT, RT |
− | + | draw(p, P--T, linewidth(0.2)); draw(p, R--T, linewidth(0.2)); | |
− | |||
add(p); | add(p); |
Revision as of 00:29, 8 May 2010
Problem
Let be a convex pentagon inscribed in a semicircle of diameter . Denote by the feet of the perpendiculars from onto lines , respectively. Prove that the acute angle formed by lines and is half the size of , where is the midpoint of segment .
Solution
Let , . Since is a chord of the circle with diameter , . From the chord , we conclude .
Triangles and are both right-triangles, and share the angle , therefore they are similar, and so the ratio . Now by Thales' theorem the angles are all right-angles. Also, , being the fourth angle in a quadrilateral with 3 right-angles is again a right-angle. Therefore and . Similarly, , and so .
Now is perpendicular to so the direction is anti-clockwise from the vertical, and since we see that is clockwise from the vertical.
Similarly, is perpendicular to so the direction is clockwise from the vertical, and since is we see that is anti-clockwise from the vertical.
Therefore the lines and intersect at an angle . Now by the central angle theorem and , and so , and we are done.
Footnote
We can prove a bit more. Namely, the extensions of the segments and meet at a point on the diameter that is vertically below the point .
Since and is inclined anti-clockwise from the vertical, the point is horizontally to the right of .
Now , so is vertically above the diameter . Also, the segment is inclined clockwise from the vertical, so if we extend it down from towards the diameter it will meet the diameter at a point which is horizontally to the left of . This places the intersection point of and vertically below .
Similarly, and by symmetry the intersection point of and is directly below on , so the lines through and meet at a point on the diameter that is vertically below .