Difference between revisions of "Proofs without words"
(temporary save) |
(more) |
||
Line 157: | Line 157: | ||
</center> | </center> | ||
− | <!-- | + | <center><!--<asy>defaultpen(linewidth(0.7)); unitsize(15); |
− | </asy><br> | + | </asy><br>--> COMING |
+ | |||
+ | [[Nichomauss' Theorem]]: <math>n^3</math> can be written as the sum of <math>n</math> consecutive integers, and consequently that <math>1^3 + 2^3 + \cdots + n^3 = (1+2+\cdots + n)^2</math>. <br><br> | ||
+ | </center> | ||
+ | |||
+ | <center>COMING<br> | ||
− | + | Another proof of the identity <math>1^3 + 2^3 + \cdots + n^3 = (1+2+\cdots + n)^2</math>.<br><br></center> | |
− | </center | ||
<center><asy>defaultpen(linewidth(0.7)); unitsize(15); pen sm = fontsize(10); | <center><asy>defaultpen(linewidth(0.7)); unitsize(15); pen sm = fontsize(10); | ||
Line 316: | Line 320: | ||
for(int i = 1; i < n+1; ++i){ | for(int i = 1; i < n+1; ++i){ | ||
draw(shiftD+(h*i,0)--shiftD+(h*i,h*(r/(1-r)-xsum))--shiftD+(h*(i-1),h*(r/(1-r)-xsum))); | draw(shiftD+(h*i,0)--shiftD+(h*i,h*(r/(1-r)-xsum))--shiftD+(h*(i-1),h*(r/(1-r)-xsum))); | ||
+ | draw(shiftD+(h*i,h*(r/(1-r)-xsum))--shiftD+(0,h*(r/(1-r)-xsum)),linetype("4 4")+linewidth(0.5)); | ||
if(i < 4) | if(i < 4) | ||
− | label("$r^"+(string) i+"$", shiftD+( | + | label("$r^"+(string) i+"$", shiftD+(h*i,h*(r/(1-r)-xsum-r^(i)/2)), ENE, sm); |
htick(shiftD+(h*i,-1),shiftD+(h*(i-1),-1)); | htick(shiftD+(h*i,-1),shiftD+(h*(i-1),-1)); | ||
if(i < n) | if(i < n) | ||
Line 326: | Line 331: | ||
} | } | ||
</asy><br><br> | </asy><br><br> | ||
− | The [[arithmetic-geometric series]] <math>\sum_{n= | + | The [[arithmetic-geometric series]] <math>\sum_{n=1}^{\infty} nr^n = \sum_{n=1}^{\infty} \sum_{i=n}^{\infty} r^i = \sum_{n=1}^{\infty} \frac{r^{-n}}{1-r} = \frac{r}{(1-r)^2}</math>, also known as Gabriel's staircase.{{ref|2}}<br><br></center> |
<center>[[#toc|Back to Top]]</center> | <center>[[#toc|Back to Top]]</center> | ||
== Geometry == | == Geometry == | ||
+ | <center><asy> | ||
+ | defaultpen(linewidth(0.7)); unitsize(15); real a = 3.9, b = 5.2, c = (a^2 + b^2)^.5; pen sm = fontsize(10); | ||
+ | void htick(pair A, pair B, pair ticklength = (0.15,0)){ draw(A--B ^^ A-ticklength--A+ticklength ^^ B-ticklength--B+ticklength); } | ||
+ | |||
+ | filldraw(xscale(a+b)*yscale(a+b)*unitsquare, rgb(1,0.9,0.8)); | ||
+ | filldraw((b,0) --(b,a)--(0,a) --cycle, rgb(0.9,1,0.9)); | ||
+ | filldraw((0,a) --(a,a)--(a,a+b)--cycle, rgb(0.9,1,0.9)); | ||
+ | filldraw((a,a+b)--(a,b)--(a+b,b)--cycle, rgb(0.9,1,0.9)); | ||
+ | filldraw((a+b,b)--(b,b)--(b,0) --cycle, rgb(0.9,1,0.9)); | ||
+ | |||
+ | htick((0,-c/10),(b,-c/10),(0,0.15)); htick((-c/10,0),(-c/10,a),(0.15,0)); label("$a$",(-c/10,a/2),W,sm); label("$b$",(b/2,-c/10),S,sm); label("$c$", (a/2,a+b/2),NW,sm); label("$b-a$",((a+b)/2,b),NNE,sm); | ||
+ | </asy><br> | ||
+ | |||
+ | First of several proofs of the [[Pythagorean Theorem]]: <math>c^2 = 4 \cdot \frac{ab}2 + (b-a)^2 = a^2 + b^2</math>.{{ref|3}}<br><br></center> | ||
+ | |||
<center><asy> | <center><asy> | ||
pathpen = linewidth(1); unitsize(15); pen dotted = linetype("2 4"); | pathpen = linewidth(1); unitsize(15); pen dotted = linetype("2 4"); | ||
Line 340: | Line 360: | ||
</asy><br> | </asy><br> | ||
− | The smallest distance necessary to travel between <math>(a,b)</math>, the x-axis, and then <math>(c,d)</math> for <math>b,d > 0</math> is given by <math>\sqrt{(a-c)^2 + (b+d)^2}</math>. <br><br></center> | + | The smallest distance necessary to travel between <math>(a,b)</math>, the x-axis, and then <math>(c,d)</math> for <math>b,d > 0</math> is given by <math>\sqrt{(a-c)^2 + (b+d)^2}</math>. <br><br></center> |
<center>[[#toc|Back to Top]]</center> | <center>[[#toc|Back to Top]]</center> | ||
Line 395: | Line 415: | ||
label("$a$",((-r+A.x)/2,-1),S); label("$b$",((r+A.x)/2,-1),S); | label("$a$",((-r+A.x)/2,-1),S); label("$b$",((r+A.x)/2,-1),S); | ||
</asy><!--[[Image:RMS-AM-GM-HM.gif]]--><br> | </asy><!--[[Image:RMS-AM-GM-HM.gif]]--><br> | ||
− | The [[Root-Mean Square-Arithmetic Mean-Geometric Mean-Harmonic mean Inequality]].{{ref| | + | The [[Root-Mean Square-Arithmetic Mean-Geometric Mean-Harmonic mean Inequality]].{{ref|5}}<br><br> |
</center> | </center> | ||
Line 436: | Line 456: | ||
#{{note|1}} MathOverflow | #{{note|1}} MathOverflow | ||
#{{note|2}} Wolfram MathWorld | #{{note|2}} Wolfram MathWorld | ||
− | #{{note|3}} This is more of a proof without words of the [[AM-GM]] inequality <math>\frac{a+b}{2} \ge \sqrt{ab}</math>; though the lengths of the segments labeled RMS and HM can easily be verified to have values of <math>\sqrt{\frac{a^2+b^2}{2}}, \frac{2}{\frac 1a + \frac 1b}</math>, respectively, it might not be obvious from the diagram. It still serves as a useful graphical demonstration of the inequality. | + | #{{note|3}} Attributed to the Chinese text [http://en.wikipedia.org/wiki/Zhou_Bi_Suan_Jing Zhou Bi Suan Jing]. |
+ | #{{note|5}} This is more of a proof without words of the [[AM-GM]] inequality <math>\frac{a+b}{2} \ge \sqrt{ab}</math>; though the lengths of the segments labeled RMS and HM can easily be verified to have values of <math>\sqrt{\frac{a^2+b^2}{2}}, \frac{2}{\frac 1a + \frac 1b}</math>, respectively, it might not be obvious from the diagram. It still serves as a useful graphical demonstration of the inequality. | ||
[[Category:Proofs]] | [[Category:Proofs]] |
Revision as of 23:50, 26 March 2010
The following demonstrate proofs of various identities and theorems using pictures, inspired from this gallery.
Summations
The sum of the first odd natural numbers is .
The sum of the first positive integers is .
The sum of the first positive integers is .[1]
Nichomauss' Theorem: can be written as the sum of consecutive integers, and consequently that .
Another proof of the identity .
The identity , where is the th Fibonacci number.
Geometric series
The infinite geometric series .
The infinite geometric series .
The infinite geometric series .
Another proof of the identity .
The infinite geometric series .
The arithmetic-geometric series , also known as Gabriel's staircase.[2]
Geometry
First of several proofs of the Pythagorean Theorem: .[3]
The smallest distance necessary to travel between , the x-axis, and then for is given by .
Miscellaneous
The Root-Mean Square-Arithmetic Mean-Geometric Mean inequality, .
The Root-Mean Square-Arithmetic Mean-Geometric Mean-Harmonic mean Inequality.[5]
Fermat's Little Theorem: for (above ).
References
- ^ MathOverflow
- ^ Wolfram MathWorld
- ^ Attributed to the Chinese text Zhou Bi Suan Jing.
- ^ This is more of a proof without words of the AM-GM inequality ; though the lengths of the segments labeled RMS and HM can easily be verified to have values of , respectively, it might not be obvious from the diagram. It still serves as a useful graphical demonstration of the inequality.