Difference between revisions of "Proofs without words"
m (temp save) |
(→Miscellaneous: enough for now) |
||
Line 137: | Line 137: | ||
== Miscellaneous == | == Miscellaneous == | ||
+ | <center><asy>unitsize(15); defaultpen(linewidth(0.7)); | ||
+ | real a=2.5,b=5,s=a+b; pen colors[] = {rgb(0.9,0.2,0.2), rgb(0.2,0.9,0.2), rgb(0.2,0.2,0.9)}; pen sm = fontsize(8); | ||
+ | void fillrect(pair A, pair B, pen p = invisible, pen l = linewidth(1)){ filldraw(A--(A.x,B.y)--B--(B.x,A.y)--cycle, p, l); } | ||
+ | void htick(pair A, pair B, pair ticklength = (0.2,0)){ | ||
+ | draw(A--B); | ||
+ | draw(A-ticklength--A+ticklength); | ||
+ | draw(B-ticklength--B+ticklength); | ||
+ | } | ||
+ | |||
+ | fillrect((0,0),(s,s)); | ||
+ | fillrect((a,b),(s,s),colors[0]); | ||
+ | filldraw((0,a)--(a,a)--(s/2,s/2)--(a,b)--(a,s)--(0,s)--cycle,colors[1],linewidth(1)); | ||
+ | filldraw((0,0)--(b,0)--(b,b)--(a,a)--(0,a)--cycle,colors[2],linewidth(1)); draw((0,0)--(a,a),linewidth(1)); | ||
+ | |||
+ | draw((s/2,s/2)--(b,a)--(a,a)--(a,b),linewidth(0.7)+linetype("4 2")); | ||
+ | htick((s+1,0),(s+1,b)); | ||
+ | htick((s+1,b),(s+1,s)); | ||
+ | |||
+ | /* in labels, a,b swapped */ | ||
+ | label("$a$",(s+1,b/2),E);label("$b$",(s+1,(s+b)/2),E); | ||
+ | label("$ab$",(a+s,b+s)/2,sm); label("$\frac{(a+b)^2}{4}$",(a,a+s)/2,sm); label("$\frac{a^2}2$",(s/2,a*2/3),sm); label("$\frac{b^2}2$",(a/4,a*2/3),sm); | ||
+ | </asy><br> | ||
+ | |||
+ | The [[Root-Mean Square-Arithmetic Mean-Geometric Mean-Harmonic mean Inequality|Root-Mean Square-Arithmetic Mean-Geometric Mean]] inequality, <math>\color{red}{ab} \color{black} \le \color{green} \frac{(a+b)^2}{4} \color{black} \le \color{blue} \frac{a^2 + b^2}{2}</math>.<br><br></center> | ||
+ | |||
+ | <center><asy> | ||
+ | unitsize(15); defaultpen(linewidth(0.7)); | ||
+ | void htick(pair A, pair B,pair ticklength = (0,0.15)){ | ||
+ | draw(A--B); | ||
+ | draw(A-ticklength--A+ticklength); | ||
+ | draw(B-ticklength--B+ticklength); | ||
+ | } | ||
+ | real a=10,b=3,r=(a+b)/2; pen sm = fontsize(8), dark = linewidth(1); | ||
+ | pen colors[] = {rgb(0.9,0.2,0.2) + dark, /* GM */ | ||
+ | rgb(0.2,0.9,0.2) + dark, /* AM */ | ||
+ | rgb(0.2,0.2,0.9) + dark, /* QM */ | ||
+ | rgb(0.2,0.9,0.9) + dark }; /* HM */ | ||
+ | pair A = (r-b,(r^2-(r-a)^2)^.5),B=foot((A.x,0),(0,0),A); | ||
+ | |||
+ | draw(arc((0,0),r,0,180)--cycle); dot(A); dot((0,r)); dot((A.x,0)); dot((0,0)); | ||
+ | draw(B--A,colors[3]); label("HM",(A+B)/2, E, sm+colors[3]); | ||
+ | draw((0,0)--(0,r),colors[1]); label("AM",(0,r*2/3), NW, sm+colors[1]); | ||
+ | draw((A.x,0)--A,colors[0]); label("GM",(A.x,A.y/2), SE, sm+colors[0]); | ||
+ | draw((A.x,0)--(0,r),colors[2]); label("RMS",(A.x/5,r*4/5), NE, sm+colors[2]); | ||
+ | |||
+ | draw((-r,0)--A--(r,0), linetype("4 2")); draw((0,0)--B--(A.x,0), linetype("4 2")); draw(rightanglemark((-r,0),A,(r,0))); draw(rightanglemark((0,0),B,(A.x,0))); | ||
+ | |||
+ | htick((-r,-1),(A.x,-1)); htick((A.x,-1),(r,-1)); | ||
+ | label("$a$",((-r+A.x)/2,-1),S); label("$b$",((r+A.x)/2,-1),S); | ||
+ | </asy><!--[[Image:RMS-AM-GM-HM.gif]]--><br> | ||
+ | The [[Root-Mean Square-Arithmetic Mean-Geometric Mean-Harmonic mean Inequality]].<br><br> | ||
+ | </center> | ||
+ | |||
<center><asy> unitsize(15); defaultpen(linewidth(0.7)); | <center><asy> unitsize(15); defaultpen(linewidth(0.7)); | ||
real r = 0.3, row1 = 3.5, row2 = 0, row3 = -3.5; | real r = 0.3, row1 = 3.5, row2 = 0, row3 = -3.5; |
Revision as of 22:56, 18 March 2010
The following demonstrate proofs of various identities and theorems using pictures, inspired from this gallery.
Summations
![[asy]unitsize(15); defaultpen(linewidth(0.7)); int n = 6; pair shiftR = ((n+2),0); real r = 0.3; pen colors(int i){ return rgb(i/n,0.4+i/(2n),1-i/n); } /* shading */ void htick(pair A, pair B,pair ticklength = (0.15,0)){ draw(A--B); draw(A-ticklength--A+ticklength); draw(B-ticklength--B+ticklength); } /* triangle */ draw((-r,0)--(-r,-n+1)^^(r,-n+1)--(r,0),linetype("4 4")); for(int i = 0; i < n; ++i) draw((-i,-i)--(i,-i)); for(int i = 0; i < n; ++i) for(int j = 0; j < 2*i+1; ++j) filldraw(CR((j-i,-i),r),colors(i)); /* square */ draw(r*expi(pi/4)+shiftR--(n-1,-n+1)+r*expi(pi/4)+shiftR^^r*expi(5*pi/4)+shiftR--r*expi(5*pi/4)+(n-1,-n+1)+shiftR,linetype("4 4")); for(int i = 0; i < n; ++i) draw(shiftR+(0,-i)--shiftR+(i,-i)--shiftR+(i,0)); for(int i = 0; i < n; ++i) for(int j = 0; j < n; ++j) filldraw(CR((j,-i)+shiftR,r),colors((i>j)?i:j)); htick(shiftR+(-1,r),shiftR+(-1,-n+1-r)); label("$n$",shiftR+(-1,(-n+1)/2),W,fontsize(10)); [/asy]](http://latex.artofproblemsolving.com/0/b/3/0b301e04f1089bf5f5f5332b9cbb151baa5c90d7.png)
The sum of the first odd natural numbers is
.
![[asy] defaultpen(linewidth(0.7)); unitsize(15); int n = 6; pair shiftR = ((n+2),0); real r = 0.3; pen colors(int i){ return rgb(0.4+i/(2n),i/n,1-i/n); } /* shading */ void htick(pair A, pair B,pair ticklength = (0.15,0)){ draw(A--B); draw(A-ticklength--A+ticklength); draw(B-ticklength--B+ticklength); } /* triangle */ draw((0.5,0)--(n-0.5,-n+1),linetype("4 4")); for(int i = 0; i < n; ++i) draw((0,-i)--(i,-i)); for(int i = 0; i < n; ++i) for(int j = 0; j <= i; ++j) filldraw(CR((j,-i),r),colors(i)); /* arc arrow */ draw( arc((n,-n+1)/2, (1.5,-1.5), (n-1.5,-1.5), CW) ); fill((n-1.5,-1.5) -- (n-1.5,-1.5)+r*expi(5.2*pi/6) -- (n-1.5,-1.5)+r*expi(3.3*pi/6) -- cycle); /* manual arrowhead? avoid resizing */ /* square */ draw(shiftR+(0.5,0)--shiftR+(n-0.5,-n+1),linetype("4 4")); for(int i = 0; i < n; ++i) draw(shiftR+(0,-i)--shiftR+(i,-i)^^shiftR+(n,-n+1)-(0,-i)--shiftR+(n,-n+1)-(i,-i)); for(int i = 0; i < n; ++i) for(int j = 0; j < n+1; ++j) filldraw(CR((j,-i)+shiftR,r),colors((j <= i) ? i : n-1-i)); /* labeling and ticks */ htick(shiftR+(-1,r),shiftR+(-1,-n+1-r)); label("$n$",shiftR+(-1,(-n+1)/2),W,fontsize(10)); htick(shiftR+(-r,-n),shiftR+(n+r-1,-n),(0,0.15)); label("$n$",shiftR+((n-1)/2,-n),S,fontsize(10)); htick(shiftR+(n-r,-n),shiftR+(n+r,-n),(0,0.15)); label("$1$",shiftR+(n,-n),S,fontsize(10)); [/asy]](http://latex.artofproblemsolving.com/4/2/3/4234a9f1ce8beb18aab9f27831bf936117909db1.png)
The sum of the first positive integers is
.
Geometric series
![[asy] defaultpen(linewidth(0.7)); unitsize(15); int n = 4; real h = 2; pen colors[] = {rgb(0.8,0,0),rgb(0,0.8,0)}; void drawTriGrid(real s){ for(int i = 0; i < 4; ++i){ draw( (-s*3/2,s*(3/2 - i)) -- (s*3/2,s*(3/2 - i)), linetype("2 2")); draw( (s*(3/2 - i),-s*3/2) -- (s*(3/2 - i),s*3/2), linetype("2 2")); } } void fillrect(pair A, pair B, pen p){ filldraw(A--(A.x,B.y)--B--(B.x,A.y)--cycle, p, linewidth(1)); } for(int i = 0; i < n; ++i) { fillrect( ((-1)^i*-h/3^i*(3/2),-h/3^i*(3/2)) , ((-1)^i*-h/3^i*(1/2),h/3^i*(3/2)) , colors[0]); fillrect(-((-1)^i*-h/3^i*(3/2),-h/3^i*(3/2)) ,-((-1)^i*-h/3^i*(1/2),h/3^i*(3/2)) , colors[1]); fillrect( (-h/3^i*(1/2),(-1)^i*h/3^i*(1/2)) , (h/3^i*(1/2),(-1)^i*h/3^i*(3/2)), colors[0]); fillrect(-(-h/3^i*(1/2),(-1)^i*h/3^i*(1/2)) ,-(h/3^i*(1/2),(-1)^i*h/3^i*(3/2)), colors[1]); drawTriGrid(h/3^i); } [/asy]](http://latex.artofproblemsolving.com/c/6/5/c655fc6d2f47f8769aef0bbf6b14eb09d86bffc8.png)
The infinite geometric series .
![[asy] defaultpen(linewidth(0.7)); unitsize(15); int n = 10; real h = 6; pen colors[] = {rgb(0.9,0,0),rgb(0,0.9,0),rgb(0,0,0.9)}; void drawEquilaterals(pair A, real s){ filldraw(A--A+s*expi(2*pi/3)--A+(-s,0)--cycle,colors[0]); filldraw(A--A+s*expi(2*pi/3)--A+s*expi(1*pi/3)--cycle,colors[1]); filldraw(A--A+s*expi(1*pi/3)--A+(s,0)--cycle,colors[2]); } for(int i = 0; i < n; ++i) drawEquilaterals( (0,h-h/(2^i) ), (h/(2^(i+1))) *2/3^.5); [/asy]](http://latex.artofproblemsolving.com/a/f/d/afd9a79206fbdf84c412e0da0fbd3c7ebf4dece6.png)
The infinite geometric series .
![[asy] defaultpen(linewidth(1)); unitsize(15); int n = 8; /* number of layers */ real h = 3; /* square height */ pen colors[] = {rgb(0.8,0,0),rgb(0,0.8,0),rgb(0,0,0.8)}; pair shiftL = (-3*h,0); /* amount to shift second square left by */ void drawSquares(real s, pair A = (0,0)){ filldraw(shift(A)*shift(-2*s, -s)*xscale(s)*yscale(s)*unitsquare,colors[0]); filldraw(shift(A)*shift(-2*s,-2*s)*xscale(s)*yscale(s)*unitsquare,colors[1]); filldraw(shift(A)*shift(-s ,-2*s)*xscale(s)*yscale(s)*unitsquare,colors[2]); } for(int i = 0; i < n; ++i) drawSquares(h/2^i); drawSquares(h,shiftL); draw(shift(shiftL+(-2*h,-2*h))*xscale(2*h)*yscale(2*h)*unitsquare); label("$\cdots$",shiftL+(-h/2,-h/2)); [/asy]](http://latex.artofproblemsolving.com/f/0/b/f0b0d378c16007488639dde8c3db62d0b4b19757.png)
Another proof of the identity .
Geometry
Miscellaneous
![[asy]unitsize(15); defaultpen(linewidth(0.7)); real a=2.5,b=5,s=a+b; pen colors[] = {rgb(0.9,0.2,0.2), rgb(0.2,0.9,0.2), rgb(0.2,0.2,0.9)}; pen sm = fontsize(8); void fillrect(pair A, pair B, pen p = invisible, pen l = linewidth(1)){ filldraw(A--(A.x,B.y)--B--(B.x,A.y)--cycle, p, l); } void htick(pair A, pair B, pair ticklength = (0.2,0)){ draw(A--B); draw(A-ticklength--A+ticklength); draw(B-ticklength--B+ticklength); } fillrect((0,0),(s,s)); fillrect((a,b),(s,s),colors[0]); filldraw((0,a)--(a,a)--(s/2,s/2)--(a,b)--(a,s)--(0,s)--cycle,colors[1],linewidth(1)); filldraw((0,0)--(b,0)--(b,b)--(a,a)--(0,a)--cycle,colors[2],linewidth(1)); draw((0,0)--(a,a),linewidth(1)); draw((s/2,s/2)--(b,a)--(a,a)--(a,b),linewidth(0.7)+linetype("4 2")); htick((s+1,0),(s+1,b)); htick((s+1,b),(s+1,s)); /* in labels, a,b swapped */ label("$a$",(s+1,b/2),E);label("$b$",(s+1,(s+b)/2),E); label("$ab$",(a+s,b+s)/2,sm); label("$\frac{(a+b)^2}{4}$",(a,a+s)/2,sm); label("$\frac{a^2}2$",(s/2,a*2/3),sm); label("$\frac{b^2}2$",(a/4,a*2/3),sm); [/asy]](http://latex.artofproblemsolving.com/1/7/b/17b7d227148c002ef58e4b0ab8e99024c2d844d1.png)
The Root-Mean Square-Arithmetic Mean-Geometric Mean inequality,

![[asy] unitsize(15); defaultpen(linewidth(0.7)); void htick(pair A, pair B,pair ticklength = (0,0.15)){ draw(A--B); draw(A-ticklength--A+ticklength); draw(B-ticklength--B+ticklength); } real a=10,b=3,r=(a+b)/2; pen sm = fontsize(8), dark = linewidth(1); pen colors[] = {rgb(0.9,0.2,0.2) + dark, /* GM */ rgb(0.2,0.9,0.2) + dark, /* AM */ rgb(0.2,0.2,0.9) + dark, /* QM */ rgb(0.2,0.9,0.9) + dark }; /* HM */ pair A = (r-b,(r^2-(r-a)^2)^.5),B=foot((A.x,0),(0,0),A); draw(arc((0,0),r,0,180)--cycle); dot(A); dot((0,r)); dot((A.x,0)); dot((0,0)); draw(B--A,colors[3]); label("HM",(A+B)/2, E, sm+colors[3]); draw((0,0)--(0,r),colors[1]); label("AM",(0,r*2/3), NW, sm+colors[1]); draw((A.x,0)--A,colors[0]); label("GM",(A.x,A.y/2), SE, sm+colors[0]); draw((A.x,0)--(0,r),colors[2]); label("RMS",(A.x/5,r*4/5), NE, sm+colors[2]); draw((-r,0)--A--(r,0), linetype("4 2")); draw((0,0)--B--(A.x,0), linetype("4 2")); draw(rightanglemark((-r,0),A,(r,0))); draw(rightanglemark((0,0),B,(A.x,0))); htick((-r,-1),(A.x,-1)); htick((A.x,-1),(r,-1)); label("$a$",((-r+A.x)/2,-1),S); label("$b$",((r+A.x)/2,-1),S); [/asy]](http://latex.artofproblemsolving.com/f/b/c/fbc7c9442d05431c8665be2a1052a21c3ec7874e.png)
The Root-Mean Square-Arithmetic Mean-Geometric Mean-Harmonic mean Inequality.
![[asy] unitsize(15); defaultpen(linewidth(0.7)); real r = 0.3, row1 = 3.5, row2 = 0, row3 = -3.5; void necklace(pair k, pen colors[]){ draw(shift(k)*unitcircle); for(int i = 0; i < colors.length; ++i){ pair p = k+expi(pi/2+2*pi*i/colors.length); fill(Circle(p,r),colors[i]); draw(Circle(p,r)); } } void htick(pair A, pair B,pair ticklength = (0.15,0)){ draw(A--B); draw(A-ticklength--A+ticklength); draw(B-ticklength--B+ticklength); } /* draw necklaces */ pen BEADS1[] = {red,red,red},BEADS2[] = {blue,blue,blue},BEADS3[] = {red,red,blue},BEADS4[] = {blue,red,red},BEADS5[] = {red,blue,red},BEADS6[] = {blue,blue,red},BEADS7[] = {red,blue,blue},BEADS8[] = {blue,red,blue}; necklace((-10,(row2+row3)/2),BEADS1);necklace((-7.5,(row2+row3)/2),BEADS2); necklace((-2.5,row2),BEADS3);necklace((0,row2),BEADS4);necklace((2.5,row2),BEADS5); necklace((-2.5,row3),BEADS6);necklace((0,row3),BEADS7);necklace((2.5,row3),BEADS8); /* box them and label */ draw((-4,row2-1.3)--(4,row2-1.3)--(4,row2+1.6)--(-4,row2+1.6)--cycle,linewidth(0.9)+linetype("4 2")); draw((-4,row3-1.3)--(4,row3-1.3)--(4,row3+1.6)--(-4,row3+1.6)--cycle,linewidth(0.9)+linetype("4 2")); htick((-4,row2+2),(4,row2+2),(0,0.15)); label("$p$",(0,row2+2),N,fontsize(10)); htick((-11.5,(row2+row3)/2+2),(-6,(row2+row3)/2+2),(0,0.15)); label("$a$",(-17.5/2,(row2+row3)/2+2),N,fontsize(10)); [/asy]](http://latex.artofproblemsolving.com/1/8/4/184e1a740aad3360df022cc73483e55119ef068c.png)
Fermat's Little Theorem: for
(above
).