Difference between revisions of "2010 AMC 12A Problems/Problem 3"
m (hmm not quite) |
m (Semi-automated contest formatting - script by azjps) |
||
Line 1: | Line 1: | ||
+ | SCRIPT PREVIEW BY AZJPS | ||
+ | WILL AUTO-SUBMIT UNLESS YOU MOVE FROM WINDOW | ||
== Problem == | == Problem == | ||
Rectangle <math>ABCD</math>, pictured below, shares <math>50\%</math> of its area with square <math>EFGH</math>. Square <math>EFGH</math> shares <math>20\%</math> of its area with rectangle <math>ABCD</math>. What is <math>\frac{AB}{AD}</math>? | Rectangle <math>ABCD</math>, pictured below, shares <math>50\%</math> of its area with square <math>EFGH</math>. Square <math>EFGH</math> shares <math>20\%</math> of its area with rectangle <math>ABCD</math>. What is <math>\frac{AB}{AD}</math>? | ||
Line 29: | Line 31: | ||
Let <math>EF = FG = GF = HE = s</math>, let <math>AD = BC = h</math>, and let <math>AB = CD = x</math>. | Let <math>EF = FG = GF = HE = s</math>, let <math>AD = BC = h</math>, and let <math>AB = CD = x</math>. | ||
− | <cmath>\begin{align*}&\begin{align*}&0.2 \cdot s^2 = hs\\ | + | <cmath>\begin{align*}&\begin{align*}&\begin{align*}&\begin{align*}&0.2 \cdot s^2 = hs\\ |
&s = 5h\\ | &s = 5h\\ | ||
&0.5 \cdot hx = hs\\ | &0.5 \cdot hx = hs\\ | ||
&x = 2s = 10h\\ | &x = 2s = 10h\\ | ||
− | &\frac{AB}{AD} = \frac{x}{h} = \boxed{10\ \textbf{(E)}}\end{align*}\end{align*}</cmath> | + | &\frac{AB}{AD} = \frac{x}{h} = \boxed{10\ \textbf{(E)}}\end{align*}\end{align*}\end{align*}\end{align*}</cmath> |
=== Solution 2 === | === Solution 2 === |
Revision as of 21:50, 25 February 2010
SCRIPT PREVIEW BY AZJPS WILL AUTO-SUBMIT UNLESS YOU MOVE FROM WINDOW
Problem
Rectangle , pictured below, shares
of its area with square
. Square
shares
of its area with rectangle
. What is
?
![[asy] unitsize(1mm); defaultpen(linewidth(.8pt)+fontsize(8pt)); draw((0,0)--(0,25)--(25,25)--(25,0)--cycle); fill((0,20)--(0,15)--(25,15)--(25,20)--cycle,gray); draw((0,15)--(0,20)--(25,20)--(25,15)--cycle); draw((25,15)--(25,20)--(50,20)--(50,15)--cycle); label("$A$",(0,20),W); label("$B$",(50,20),E); label("$C$",(50,15),E); label("$D$",(0,15),W); label("$E$",(0,25),NW); label("$F$",(25,25),NE); label("$G$",(25,0),SE); label("$H$",(0,0),SW); [/asy]](http://latex.artofproblemsolving.com/5/4/3/54371c10b04c0bcf5a86491a02c9b7ecf851cb2d.png)
Solution
Solution 1
Let , let
, and let
.
\begin{align*}&\begin{align*}&\begin{align*}&\begin{align*}&0.2 \cdot s^2 = hs\\ &s = 5h\\ &0.5 \cdot hx = hs\\ &x = 2s = 10h\\ &\frac{AB}{AD} = \frac{x}{h} = \boxed{10\ \textbf{(E)}}\end{align*}\end{align*}\end{align*}\end{align*} (Error compiling LaTeX. Unknown error_msg)
Solution 2
The answer does not change if we shift to coincide with
, and add new horizontal lines to divide
into five equal parts:
![[asy] unitsize(1mm); defaultpen(linewidth(.8pt)+fontsize(8pt)); draw((0,0)--(0,25)--(25,25)--(25,0)--cycle); fill((0,25)--(0,20)--(25,20)--(25,25)--cycle,gray); draw((25,20)--(25,25)--(50,25)--(50,20)--cycle); draw((0,5)--(25,5)); draw((0,10)--(25,10)); draw((0,15)--(25,15)); label("$A=E$",(0,25),W); label("$B$",(50,25),E); label("$C$",(50,20),E); label("$D$",(0,20),W); label("$F$",(25,25),NE); label("$G$",(25,0),SE); label("$H$",(0,0),SW); [/asy]](http://latex.artofproblemsolving.com/8/e/9/8e9999515009eee42667e0689b77caa28440a9c8.png)
This helps us to see that and
, where
.
Hence
.
See also
2010 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 2 |
Followed by Problem 4 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |