Difference between revisions of "2009 USAMO Problems/Problem 4"
m (tex) |
(→Solution) |
||
Line 5: | Line 5: | ||
== Solution == | == Solution == | ||
− | Assume without loss of generality that <math>a_1 \ | + | Assume without loss of generality that <math>a_1 \geq a_2 \geq \cdots \geq a_n</math>. Now we seek to prove that <math>a_1 \le 4a_n</math>. |
By the [[Cauchy-Schwarz Inequality]], <cmath>\begin{align*} | By the [[Cauchy-Schwarz Inequality]], <cmath>\begin{align*} |
Revision as of 20:46, 16 September 2009
Problem
For let , , ..., be positive real numbers such that
Prove that max .
Solution
Assume without loss of generality that . Now we seek to prove that .
By the Cauchy-Schwarz Inequality, Since , clearly , dividing yields:
as desired.
See Also
2009 USAMO (Problems • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |