Difference between revisions of "2007 AMC 12A Problems/Problem 22"
(new solution based on observing the problem modulo 9) |
m (→Solution 1) |
||
Line 24: | Line 24: | ||
Case 4: <math>199u</math>. But <math>S(n) > 19</math>, and the these clearly sum to <math>> 2007</math>. | Case 4: <math>199u</math>. But <math>S(n) > 19</math>, and the these clearly sum to <math>> 2007</math>. | ||
− | Case 5: <math>200u</math>. So <math>S(n) = 2 + u</math> and <math>S(S(n)) = 2 + u</math>, and <math>2000 + u + 2 + u + 2 + u = 2004 + 3u = 2007 \Longrightarrow u = 1</math>. Fourth solution. | + | Case 5: <math>200u</math>. So <math>S(n) = 2 + u</math> and <math>S(S(n)) = 2 + u</math> (recall that <math>n < 2007 </math>), and <math>2000 + u + 2 + u + 2 + u = 2004 + 3u = 2007 \Longrightarrow u = 1</math>. Fourth solution. |
In total we have <math>4 \mathrm{(D)}</math> solutions, which are <math>1977, 1980, 1983, </math> and <math>2001</math>. | In total we have <math>4 \mathrm{(D)}</math> solutions, which are <math>1977, 1980, 1983, </math> and <math>2001</math>. |
Revision as of 21:57, 3 July 2009
- The following problem is from both the 2007 AMC 12A #22 and 2007 AMC 10A #25, so both problems redirect to this page.
Problem
For each positive integer , let denote the sum of the digits of For how many values of is
Solution
Solution 1
For the sake of notation let . Obviously . Then the maximum value of is when , and the sum becomes . So the minimum bound is . We do casework upon the tens digit:
Case 1: . Easy to directly disprove.
Case 2: . , and if and otherwise.
- Subcase a: . This exceeds our bounds, so no solution here.
- Subcase b: . First solution.
Case 3: . , and if and otherwise.
- Subcase a: . Second solution.
- Subcase b: . Third solution.
Case 4: . But , and the these clearly sum to .
Case 5: . So and (recall that ), and . Fourth solution.
In total we have solutions, which are and .
Solution 2
Clearly, . We can break this up into three cases:
Case 1:
- Inspection gives .
Case 2: , ,
- If you set up an equation, it reduces to
- which has as its only solution satisfying the constraints , .
Case 3: , ,
- This reduces to
- . The only two solutions satisfying the constraints for this equation are , and , .
The solutions are thus and the answer is .
Solution 3
As in Solution 1, we note that and .
Obviously, .
As , this means that , or equivalently that .
Thus . For each possible we get three possible .
(E. g., if , then is a number such that and , therefore .)
For each of these nine possibilities we compute as and check whether .
We'll find out that out of the 9 cases, in 4 the value has the correct sum of digits.
This happens for .
See also
2007 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 21 |
Followed by Problem 23 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
2007 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Last question | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |