Difference between revisions of "2009 USAMO Problems/Problem 4"
(New page: == Problem == For <math>n \ge 2</math> let <math>a_1</math>, <math>a_2</math>, ..., <math>a_n</math> be positive real numbers such that <cmath> (a_1+a_2+ ... +a_n)\big( {1 \over a_1} + {1...) |
(→Problem) |
||
Line 3: | Line 3: | ||
<cmath> (a_1+a_2+ ... +a_n)\big( {1 \over a_1} + {1 \over a_2} + ... +{1 \over a_n} \big) \le \big(n+ {1 \over 2} \big) ^2 </cmath> | <cmath> (a_1+a_2+ ... +a_n)\big( {1 \over a_1} + {1 \over a_2} + ... +{1 \over a_n} \big) \le \big(n+ {1 \over 2} \big) ^2 </cmath> | ||
Prove that max <math>(a_1, a_2, ... ,a_n)</math> <math> \le </math> 4 min <math>(a_1, a_2, ... , a_n)</math>. | Prove that max <math>(a_1, a_2, ... ,a_n)</math> <math> \le </math> 4 min <math>(a_1, a_2, ... , a_n)</math>. | ||
+ | |||
+ | |||
+ | == Solution == | ||
+ | Assume without loss of generality that <math>a_i \ge a_{i+1}</math> for all <math>1\lei\le n-1</math>. Now we seek to prove that <math>a_1 \le 4a_n</math> | ||
+ | |||
+ | Now by Cauchy-Schwartz, <cmath>(a_n+a_2+ a_3 + ... +a_{n-1}+a_1)({1 \over a_1} + {1 \over a_2} + ... +{1 \over a_n}) \ge \big( \sqrt{a_n \over a_1} + n-2 + \sqrt{a_1 \over a_n} \big)^2</cmath> | ||
+ | <cmath>(n+ {1 \over 2})^2 \ge \big( \sqrt{a_n \over a_1} + n-2 + \sqrt{a_1 \over a_n} \big)^2 </cmath> | ||
+ | <cmath> n+ {1 \over 2} \ge n-2 + \sqrt{a_n \over a_1} + \sqrt{a_1 \over a_n}</cmath> | ||
+ | <cmath>{5 \over 2} \ge \sqrt{a_n \over a_1} + \sqrt{a_1 \over a_n}</cmath> | ||
+ | <cmath>{17 \over 4} \ge {a_n \over a_1} + {a_1 \over a_n}</cmath> | ||
+ | <cmath> 0 \ge (a_1 - 4a_n)(a_1 - {a_n \over 4})</cmath> | ||
+ | Since <math>a_1 \ge a_n</math>, clearly <math>(a_1 - {a_n \over 4}) > 0</math>, | ||
+ | so dividing yields: | ||
+ | <cmath>0 \ge (a_1 - 4a_n)</cmath> | ||
+ | <math>4a_n \ge a_1</math> as desired. |
Revision as of 09:55, 12 June 2009
Problem
For let , , ..., be positive real numbers such that Prove that max 4 min .
Solution
Assume without loss of generality that for all $1\lei\le n-1$ (Error compiling LaTeX. Unknown error_msg). Now we seek to prove that
Now by Cauchy-Schwartz, Since , clearly , so dividing yields: as desired.