Difference between revisions of "2006 USAMO Problems/Problem 6"
Serialk11r (talk | contribs) |
Serialk11r (talk | contribs) |
||
Line 16: | Line 16: | ||
From the similarity, we have that <math>XE/XF=AE/BF</math>. But we are given <math>ED/AE=CF/BF</math>, so multiplying the 2 equations together gets us <math>ED/FC=XE/XF</math>. <math>DEX,CFX</math> are the supplements of <math>AEX, BFX</math>, which are congruent, so <math>DEX=CFX</math>, and so <math>XED~XFC</math> by SAS similarity, and so <math>X</math> is also the center of spiral similarity for <math>E,D,F,</math> and <math>C</math>. Thus, <math>X</math> and <math>Y</math> are the same point, which all the circumcircles pass through, and so the statement is true. | From the similarity, we have that <math>XE/XF=AE/BF</math>. But we are given <math>ED/AE=CF/BF</math>, so multiplying the 2 equations together gets us <math>ED/FC=XE/XF</math>. <math>DEX,CFX</math> are the supplements of <math>AEX, BFX</math>, which are congruent, so <math>DEX=CFX</math>, and so <math>XED~XFC</math> by SAS similarity, and so <math>X</math> is also the center of spiral similarity for <math>E,D,F,</math> and <math>C</math>. Thus, <math>X</math> and <math>Y</math> are the same point, which all the circumcircles pass through, and so the statement is true. | ||
− | |||
== See Also == | == See Also == |
Revision as of 02:05, 28 March 2009
Problem
Let be a quadrilateral, and let
and
be points on sides
and
, respectively, such that
. Ray
meets rays
and
at
and
respectively. Prove that the circumcircles of triangles
and
pass through a common point.
Solution
Let the intersection of the circumcircles of and
be
, and let the intersection of the circumcircles of
and
be
.
because
tends both arcs
and
.
because
tends both arcs
and
.
Thus,
by AA similarity, and
is the center of spiral similarity for
and
.
because
tends both arcs
and
.
because
tends both arcs
and
.
Thus,
by AA similarity, and
is the center of spiral similarity for
and
.
From the similarity, we have that . But we are given
, so multiplying the 2 equations together gets us
.
are the supplements of
, which are congruent, so
, and so
by SAS similarity, and so
is also the center of spiral similarity for
and
. Thus,
and
are the same point, which all the circumcircles pass through, and so the statement is true.