Difference between revisions of "2009 AMC 12B Problems/Problem 9"

(New page: == Problem == Triangle <math>ABC</math> has vertices <math>A = (3,0)</math>, <math>B = (0,3)</math>, and <math>C</math>, where <math>C</math> is on the line <math>x + y = 7</math>. What i...)
 
(Solution 2)
Line 15: Line 15:
  
 
=== Solution 2 ===
 
=== Solution 2 ===
The base of the triangle is <math>AB = \sqrt{3^2 + 3^2} = 3\sqrt 2</math>.  Its altitude is the distance between the point <math>A</math> and the parallel line <math>x + y = 7</math>, which is
+
The base of the triangle is <math>AB = \sqrt{3^2 + 3^2} = 3\sqrt 2</math>.  Its altitude is the distance between the point <math>A</math> and the parallel line <math>x + y = 7</math>, which is <math>\frac 4{\sqrt 2} = 2\sqrt 2</math>. Therefore its area is <math>\frac 12 \cdot 3\sqrt 2 \cdot 2\sqrt 2 = \boxed{6}</math>.  The answer is <math>\mathrm{(A)}</math>.
<cmath>\frac {|3 + 0 - 7|}{\sqrt {1^2 + 1^2}} = 2\sqrt 2</cmath>
+
 
Therefore its area is <math>\frac 12 \cdot 3\sqrt 2 \cdot 2\sqrt 2 = \boxed{6}</math>.  The answer is <math>\mathrm{(A)}</math>.
+
<asy>
 +
unitsize(0.75cm);
 +
defaultpen(0.8);
 +
pair A=(3,0), B=(0,3);
 +
draw ( (-1,0) -- (9,0), dashed );
 +
draw ( (0,-1) -- (0,9), dashed );
 +
dot(A); dot(B); draw(A--B);
 +
draw ( (-1,8) -- (8,-1) );
 +
label( "$A$", A, S );
 +
label( "$B$", B, W );
 +
label( "$3$", A--(0,0), S );
 +
label( "$3$", B--(0,0), W );
 +
label( "$x+y=7$", (8,-1), SE );
 +
pair C = intersectionpoint(A--(10,7),(7,0)--(0,7));
 +
draw( A--C, dashed );
 +
draw(rightanglemark(A,C,(7,0)));
 +
draw(rightanglemark(C,A,B));
 +
label( "$4$", A--(7,0), S );
 +
label( "$3\sqrt 2$", 0.67*B+0.33*A, NE );
 +
label( "$\frac 4{\sqrt 2}$", A--C, NW );
 +
label( "$\frac 4{\sqrt 2}$", C--(7,0), NE );
 +
</asy>
  
 
== See also ==
 
== See also ==
 
{{AMC12 box|year=2009|ab=B|num-b=8|num-a=10}}
 
{{AMC12 box|year=2009|ab=B|num-b=8|num-a=10}}

Revision as of 16:03, 2 March 2009

Problem

Triangle $ABC$ has vertices $A = (3,0)$, $B = (0,3)$, and $C$, where $C$ is on the line $x + y = 7$. What is the area of $\triangle ABC$?


$\mathrm{(A)}\ 6\qquad \mathrm{(B)}\ 8\qquad \mathrm{(C)}\ 10\qquad \mathrm{(D)}\ 12\qquad \mathrm{(E)}\ 14$

Solution

Solution 1

Because the line $x + y = 7$ is parallel to $\overline {AB}$, the area of $\triangle ABC$ is independent of the location of $C$ on that line. Therefore it may be assumed that $C$ is $(7,0)$. In that case the triangle has base $AC = 4$ and altitude $3$, so its area is $\frac 12 \cdot 4 \cdot 3 = \boxed {6}$.

Solution 2

The base of the triangle is $AB = \sqrt{3^2 + 3^2} = 3\sqrt 2$. Its altitude is the distance between the point $A$ and the parallel line $x + y = 7$, which is $\frac 4{\sqrt 2} = 2\sqrt 2$. Therefore its area is $\frac 12 \cdot 3\sqrt 2 \cdot 2\sqrt 2 = \boxed{6}$. The answer is $\mathrm{(A)}$.

[asy] unitsize(0.75cm); defaultpen(0.8); pair A=(3,0), B=(0,3); draw ( (-1,0) -- (9,0), dashed ); draw ( (0,-1) -- (0,9), dashed ); dot(A); dot(B); draw(A--B); draw ( (-1,8) -- (8,-1) ); label( "$A$", A, S ); label( "$B$", B, W ); label( "$3$", A--(0,0), S ); label( "$3$", B--(0,0), W ); label( "$x+y=7$", (8,-1), SE ); pair C = intersectionpoint(A--(10,7),(7,0)--(0,7)); draw( A--C, dashed ); draw(rightanglemark(A,C,(7,0))); draw(rightanglemark(C,A,B)); label( "$4$", A--(7,0), S ); label( "$3\sqrt 2$", 0.67*B+0.33*A, NE ); label( "$\frac 4{\sqrt 2}$", A--C, NW ); label( "$\frac 4{\sqrt 2}$", C--(7,0), NE ); [/asy]

See also

2009 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions