Difference between revisions of "1984 AIME Problems/Problem 15"

(fmtting)
m (Solution)
Line 4: Line 4:
 
<div style="text-align:center;"><math> \frac{x^2}{2^2-1}+\frac{y^2}{2^2-3^2}+\frac{z^2}{2^2-5^2}+\frac{w^2}{2^2-7^2}=1 </math><br /><math> \frac{x^2}{4^2-1}+\frac{y^2}{4^2-3^2}+\frac{z^2}{4^2-5^2}+\frac{w^2}{4^2-7^2}=1 </math><br /><math> \frac{x^2}{6^2-1}+\frac{y^2}{6^2-3^2}+\frac{z^2}{6^2-5^2}+\frac{w^2}{6^2-7^2}=1 </math><br /><math> \frac{x^2}{8^2-1}+\frac{y^2}{8^2-3^2}+\frac{z^2}{8^2-5^2}+\frac{w^2}{8^2-7^2}=1 </math></div>
 
<div style="text-align:center;"><math> \frac{x^2}{2^2-1}+\frac{y^2}{2^2-3^2}+\frac{z^2}{2^2-5^2}+\frac{w^2}{2^2-7^2}=1 </math><br /><math> \frac{x^2}{4^2-1}+\frac{y^2}{4^2-3^2}+\frac{z^2}{4^2-5^2}+\frac{w^2}{4^2-7^2}=1 </math><br /><math> \frac{x^2}{6^2-1}+\frac{y^2}{6^2-3^2}+\frac{z^2}{6^2-5^2}+\frac{w^2}{6^2-7^2}=1 </math><br /><math> \frac{x^2}{8^2-1}+\frac{y^2}{8^2-3^2}+\frac{z^2}{8^2-5^2}+\frac{w^2}{8^2-7^2}=1 </math></div>
  
== Solution ==
+
== Solution 1 ==
 
For each of the values <math>t=4,16,36,64</math>, we have the [[equation]]
 
For each of the values <math>t=4,16,36,64</math>, we have the [[equation]]
  
Line 36: Line 36:
  
 
<cmath>\frac{3^2(3\cdot 11\cdot 13+5\cdot 7\cdot 17)}{2^8}=3^2\cdot 4=\boxed{036}.</cmath>
 
<cmath>\frac{3^2(3\cdot 11\cdot 13+5\cdot 7\cdot 17)}{2^8}=3^2\cdot 4=\boxed{036}.</cmath>
 +
 +
== Solution 2 ==
 +
As in Solution 1, we have
 +
<div style="text-align:center;"><math>(t-1)(t-9)(t-25)(t-49)-x^2(t-9)(t-25)(t-49)-y^2(t-1)(t-25)(t-49)</math> <math>-z^2(t-1)(t-9)(t-49)-w^2(t-1)(t-9)(t-25)</math>
 +
<math>=(t-4)(t-16)(t-36)(t-64)</math>
 +
</div>
 +
Now the coefficient of <math>t^3</math> on both sides must be equal. Therefore we have <math>1+9+25+49+x^2+y^2+z^2+w^2=4+16+36+64\implies x^2+y^2+z^2+w^2=\boxed{36}</math>.
  
 
== See also ==
 
== See also ==

Revision as of 10:51, 28 February 2009

Problem

Determine $w^2+x^2+y^2+z^2$ if

$\frac{x^2}{2^2-1}+\frac{y^2}{2^2-3^2}+\frac{z^2}{2^2-5^2}+\frac{w^2}{2^2-7^2}=1$
$\frac{x^2}{4^2-1}+\frac{y^2}{4^2-3^2}+\frac{z^2}{4^2-5^2}+\frac{w^2}{4^2-7^2}=1$
$\frac{x^2}{6^2-1}+\frac{y^2}{6^2-3^2}+\frac{z^2}{6^2-5^2}+\frac{w^2}{6^2-7^2}=1$
$\frac{x^2}{8^2-1}+\frac{y^2}{8^2-3^2}+\frac{z^2}{8^2-5^2}+\frac{w^2}{8^2-7^2}=1$

Solution 1

For each of the values $t=4,16,36,64$, we have the equation

$x^2(t-9)(t-25)(t-49)+y^2(t-1)(t-25)(t-49)$ $+z^2(t-1)(t-9)(t-49)+w^2(t-1)(t-9)(t-25)$

$=(t-1)(t-9)(t-25)(t-49)-(t-4)(t-16)(t-36)(t-64)$

However, each side of the equation is a polynomial in $t$ of degree at most 3, and they have 4 common roots. Therefore, the polynomials must be equal.

Now we can plug in $t=1$ into the polynomial equation. Most terms drop, and we end up with

\[x^2(-8)(-24)(-48)=-(-3)(-15)(-35)(-63)\]

so that

\[x^2=\frac{3\cdot 15\cdot 35\cdot 63}{8\cdot 24\cdot 48}=\frac{3^2\cdot 5^2\cdot 7^2}{2^{10}}\]

Similarly, we can plug in $t=9,25,49$ and get

\begin{align*}
y^2&=\frac{5\cdot 7\cdot 27\cdot 55}{8\cdot 16\cdot 40}=\frac{3^3\cdot 5\cdot 7\cdot 11}{2^{10}}\\
z^2&=\frac{21\cdot 9\cdot 11\cdot 39}{24\cdot 16\cdot 24}=\frac{3^2\cdot 7\cdot 11\cdot 13}{2^{10}}\\
w^2&=\frac{45\cdot 33\cdot 13\cdot 15}{48\cdot 40\cdot 24}=\frac{3^2\cdot 5\cdot 11\cdot 13}{2^{10}} (Error compiling LaTeX. Unknown error_msg)

Now adding them up,

\begin{align*}z^2+w^2&=\frac{3^2\cdot 11\cdot 13(7+5)}{2^{10}}=\frac{3^3\cdot 11\cdot 13}{2^8}\\ x^2+y^2&=\frac{3^2\cdot 5\cdot 7(5\cdot 7+3\cdot 11)}{2^{10}}=\frac{3^2\cdot 5\cdot 7\cdot 17}{2^8}\end{align*}

with a sum of

\[\frac{3^2(3\cdot 11\cdot 13+5\cdot 7\cdot 17)}{2^8}=3^2\cdot 4=\boxed{036}.\]

Solution 2

As in Solution 1, we have

$(t-1)(t-9)(t-25)(t-49)-x^2(t-9)(t-25)(t-49)-y^2(t-1)(t-25)(t-49)$ $-z^2(t-1)(t-9)(t-49)-w^2(t-1)(t-9)(t-25)$

$=(t-4)(t-16)(t-36)(t-64)$

Now the coefficient of $t^3$ on both sides must be equal. Therefore we have $1+9+25+49+x^2+y^2+z^2+w^2=4+16+36+64\implies x^2+y^2+z^2+w^2=\boxed{36}$.

See also

1984 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Last Question
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions