Difference between revisions of "2002 AMC 10A Problems/Problem 10"

(fixed a mistake)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
== Problem ==
+
#redirect [[2002 AMC 12A Problems/Problem 1]]
 
 
What is the sum of all of the roots of <math>(2x + 3) (x - 4) + (2x + 3) (x - 6) = 0</math>?
 
 
 
<math>\text{(A)}\ 7/2 \qquad \text{(B)}\ 4 \qquad \text{(C)}\ 5 \qquad \text{(D)}\ 7 \qquad \text{(E)}\ 13</math>
 
 
 
==Solution==
 
===Solution 1===
 
We expand to get <math>2x^2-8x+3x-12+2x^2-12x+3x-18=0</math> which is <math>4x^2-14x-30=0</math> after combining like terms. Using the quadratic part of [[Vieta's Formulas]], we find the sum of the roots is <math>\boxed{\text{(A)}\ 7/2}</math>.
 
 
 
===Solution 2===
 
Combine terms to get <math>(2x+3)\cdot\Big( (x-4)+(x-6) \Big) = (2x+3)(2x-10)=0</math>, hence the roots are <math>-\frac{3}{2}</math> and <math>5</math>, thus our answer is <math>-\frac{3}{2}+5=\boxed{\text{(A)}\ 7/2}</math>.
 
 
 
==See Also==
 
{{AMC10 box|year=2002|ab=A|num-b=9|num-a=11}}
 
 
 
[[Category:Introductory Algebra Problems]]
 

Latest revision as of 06:48, 18 February 2009