GET READY FOR THE AMC 12 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 12 Problem Series online course.
CHECK SCHEDULE

Difference between revisions of "2009 AMC 12A Problems"

m (Problem 13)
(Problem 9)
Line 66: Line 66:
  
 
== Problem 9 ==
 
== Problem 9 ==
 +
 +
Suppose that <math>f(x+3)=3x^2 + 7x + 4</math> and <math>f(x)=ax^2 + bx + c</math>. What is <math>a+b+c</math>?
 +
 +
<math>\textbf{(A)}\ -1 \qquad \textbf{(B)}\ 0 \qquad \textbf{(C)}\ 1 \qquad \textbf{(D)}\ 2 \qquad \textbf{(E)}\ 3</math>
  
 
[[2009 AMC 12A Problems/Problem 9|Solution]]
 
[[2009 AMC 12A Problems/Problem 9|Solution]]

Revision as of 15:49, 12 February 2009

Problem 1

Kim's flight took off from Newark at 10:34 AM and landed in Miami at 1:18 PM. Both cities are in the same time zone. If her flight took $h$ hours and $m$ minutes, with $0 < m < 60$, what is $h + m$?

$\textbf{(A)}\ 46 \qquad \textbf{(B)}\ 47 \qquad \textbf{(C)}\ 50 \qquad \textbf{(D)}\ 53 \qquad \textbf{(E)}\ 54$

Solution

Problem 2

Which of the following is equal to $1 + \frac {1}{1 + \frac {1}{1 + 1}}$?

$\textbf{(A)}\ \frac {5}{4} \qquad \textbf{(B)}\ \frac {3}{2} \qquad \textbf{(C)}\ \frac {5}{3} \qquad \textbf{(D)}\ 2 \qquad \textbf{(E)}\ 3$

Solution

Problem 3

What number is one third of the way from $\frac14$ to $\frac34$?

$\textbf{(A)}\ \frac {1}{3} \qquad \textbf{(B)}\ \frac {5}{12} \qquad \textbf{(C)}\ \frac {1}{2} \qquad \textbf{(D)}\ \frac {7}{12} \qquad \textbf{(E)}\ \frac {2}{3}$

Solution

Problem 4

Four coins are picked out of a piggy bank that contains a collection of pennies, nickels, dimes, and quarters. Which of the following could [i]not[/i] be the total value of the four coins, in cents?

$\textbf{(A)}\ 15 \qquad \textbf{(B)}\ 25 \qquad \textbf{(C)}\ 35 \qquad \textbf{(D)}\ 45 \qquad \textbf{(E)}\ 55$

Solution

Problem 5

One dimension of a cube is increased by $1$, another is decreased by $1$, and the third is left unchanged. The volume of the new rectangular solid is $5$ less than that of the cube. What was the volume of the cube?

$\textbf{(A)}\ 8 \qquad \textbf{(B)}\ 27 \qquad \textbf{(C)}\ 64 \qquad \textbf{(D)}\ 125 \qquad \textbf{(E)}\ 216$

Solution

Problem 6

Suppose that $P = 2^m$ and $Q = 3^n$. Which of the following is equal to $12^{mn}$ for every pair of integers $(m,n)$?

$\textbf{(A)}\ P^2Q \qquad \textbf{(B)}\ P^nQ^m \qquad \textbf{(C)}\ P^nQ^{2m} \qquad \textbf{(D)}\ P^{2m}Q^n \qquad \textbf{(E)}\ P^{2n}Q^m$

Solution

Problem 7

The first three terms of an arithmetic sequence are $2x - 3$, $5x - 11$, and $3x + 1$ respectively. The $n$th term of the sequence is $2009$. What is $n$?

$\textbf{(A)}\ 255 \qquad \textbf{(B)}\ 502 \qquad \textbf{(C)}\ 1004 \qquad \textbf{(D)}\ 1506 \qquad \textbf{(E)}\ 8037$

Solution

Problem 8

Four congruent rectangles are placed as shown. The area of the outer square is $4$ times that of the inner square. What is the ratio of the length of the longer side of each rectangle to the length of its shorter side?

[asy] unitsize(6mm); defaultpen(linewidth(.8pt));  path p=(1,1)--(-2,1)--(-2,2)--(1,2); draw(p); draw(rotate(90)*p); draw(rotate(180)*p); draw(rotate(270)*p); [/asy]

$\textbf{(A)}\ 3 \qquad \textbf{(B)}\ \sqrt {10} \qquad \textbf{(C)}\ 2 + \sqrt2 \qquad \textbf{(D)}\ 2\sqrt3 \qquad \textbf{(E)}\ 4$

Solution

Problem 9

Suppose that $f(x+3)=3x^2 + 7x + 4$ and $f(x)=ax^2 + bx + c$. What is $a+b+c$?

$\textbf{(A)}\ -1 \qquad \textbf{(B)}\ 0 \qquad \textbf{(C)}\ 1 \qquad \textbf{(D)}\ 2 \qquad \textbf{(E)}\ 3$

Solution

Problem 10

In quadrilateral $ABCD$, $AB = 5$, $BC = 17$, $CD = 5$, $DA = 9$, and $BD$ is an integer. What is $BD$?

[asy] unitsize(4mm); defaultpen(linewidth(.8pt)+fontsize(8pt)); dotfactor=4;  pair C=(0,0), B=(17,0); pair D=intersectionpoints(Circle(C,5),Circle(B,13))[0]; pair A=intersectionpoints(Circle(D,9),Circle(B,5))[0]; pair[] dotted={A,B,C,D};  draw(D--A--B--C--D--B); dot(dotted); label("$D$",D,NW); label("$C$",C,W); label("$B$",B,E); label("$A$",A,NE); [/asy]

$\textbf{(A)}\ 11 \qquad \textbf{(B)}\ 12 \qquad \textbf{(C)}\ 13 \qquad \textbf{(D)}\ 14 \qquad \textbf{(E)}\ 15$

Solution

Problem 11

The figures $F_1$, $F_2$, $F_3$, and $F_4$ shown are the first in a sequence of figures. For $n\ge3$, $F_n$ is constructed from $F_{n - 1}$ by surrounding it with a square and placing one more diamond on each side of the new square than $F_{n - 1}$ had on each side of its outside square. For example, figure $F_3$ has $13$ diamonds. How many diamonds are there in figure $F_{20}$?

[asy] unitsize(3mm); defaultpen(linewidth(.8pt)+fontsize(8pt));  path d=(1/2,0)--(0,sqrt(3)/2)--(-1/2,0)--(0,-sqrt(3)/2)--cycle; marker m=marker(scale(5)*d,Fill); path f1=(0,0); path f2=(0,0)--(-1,1)--(1,1)--(1,-1)--(-1,-1); path[] g2=(-1,1)--(-1,-1)--(0,0)^^(1,-1)--(0,0)--(1,1); path f3=f2--(-2,-2)--(-2,0)--(-2,2)--(0,2)--(2,2)--(2,0)--(2,-2)--(0,-2); path[] g3=g2^^(-2,-2)--(0,-2)^^(2,-2)--(1,-1)^^(1,1)--(2,2)^^(-1,1)--(-2,2); path[] f4=f3^^(-3,-3)--(-3,-1)--(-3,1)--(-3,3)--(-1,3)--(1,3)--(3,3)-- (3,1)--(3,-1)--(3,-3)--(1,-3)--(-1,-3); path[] g4=g3^^(-2,-2)--(-3,-3)--(-1,-3)^^(3,-3)--(2,-2)^^(2,2)--(3,3)^^ (-2,2)--(-3,3);  draw(f1,m); draw(shift(5,0)*f2,m); draw(shift(5,0)*g2); draw(shift(12,0)*f3,m); draw(shift(12,0)*g3); draw(shift(21,0)*f4,m); draw(shift(21,0)*g4); label("$F_1$",(0,-4)); label("$F_2$",(5,-4)); label("$F_3$",(12,-4)); label("$F_4$",(21,-4)); [/asy]

$\textbf{(A)}\ 401 \qquad \textbf{(B)}\ 485 \qquad \textbf{(C)}\ 585 \qquad \textbf{(D)}\ 626 \qquad \textbf{(E)}\ 761$

Solution

Problem 12

How many positive integers less than $1000$ are $6$ times the sum of their digits?

$\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ 4 \qquad \textbf{(E)}\ 12$

Solution

Problem 13

A ship sails $10$ miles in a straight line from $A$ to $B$, turns through an angle between $45^{\circ}$ and $60^{\circ}$, and then sails another $20$ miles to $C$. Let $AC$ be measured in miles. Which of the following intervals contains $AC^2$? [asy] unitsize(2mm); defaultpen(linewidth(.8pt)+fontsize(10pt)); dotfactor=4;  pair B=(0,0), A=(-10,0), C=20*dir(50);  draw(A--B--C); draw(A--C,linetype("4 4"));  dot(A); dot(B); dot(C); label("$10$",midpoint(A--B),S); label("$20$",midpoint(B--C),SE); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,NE); [/asy]

$\textbf{(A)}\ [400,500] \qquad \textbf{(B)}\ [500,600] \qquad \textbf{(C)}\ [600,700] \qquad \textbf{(D)}\ [700,800]$ $\textbf{(E)}\ [800,900]$

Solution

Problem 14

A triangle has vertices $(0,0)$, $(1,1)$, and $(6m,0)$, and the line $y = mx$ divides the triangle into two triangles of equal area. What is the sum of all possible values of $m$?

$\textbf{(A)} - \!\frac {1}{3} \qquad \textbf{(B)} - \!\frac {1}{6} \qquad \textbf{(C)}\ \frac {1}{6} \qquad \textbf{(D)}\ \frac {1}{3} \qquad \textbf{(E)}\ \frac {1}{2}$

Solution

Problem 15

For what value of $n$ is $i + 2i^2 + 3i^3 + \cdots + ni^n = 48 + 49i$?

Note: here $i = \sqrt { - 1}$.

$\textbf{(A)}\ 24 \qquad \textbf{(B)}\ 48 \qquad \textbf{(C)}\ 49 \qquad \textbf{(D)}\ 97 \qquad \textbf{(E)}\ 98$

Solution

Problem 16

A circle with center $C$ is tangent to the positive $x$ and $y$-axes and externally tangent to the circle centered at $(3,0)$ with radius $1$. What is the sum of all possible radii of the circle with center $C$?

$\textbf{(A)}\ 3 \qquad \textbf{(B)}\ 4 \qquad \textbf{(C)}\ 6 \qquad \textbf{(D)}\ 8 \qquad \textbf{(E)}\ 9$

Solution

Problem 17

Let $a + ar_1 + ar_1^2 + ar_1^3 + \cdots$ and $a + ar_2 + ar_2^2 + ar_2^3 + \cdots$ be two different infinite geometric series of positive numbers with the same first term. The sum of the first series is $r_1$, and the sum of the second series is $r_2$. What is $r_1 + r_2$?

$\textbf{(A)}\ 0\qquad \textbf{(B)}\ \frac {1}{2}\qquad \textbf{(C)}\ 1\qquad \textbf{(D)}\ \frac {1 + \sqrt {5}}{2}\qquad \textbf{(E)}\ 2$

Solution

Problem 18

For $k > 0$, let $I_k = 10\ldots 064$, where there are $k$ zeros between the $1$ and the $6$. Let $N(k)$ be the number of factors of $2$ in the prime factorization of $I_k$. What is the maximum value of $N(k)$?

$\textbf{(A)}\ 6\qquad \textbf{(B)}\ 7\qquad \textbf{(C)}\ 8\qquad \textbf{(D)}\ 9\qquad \textbf{(E)}\ 10$

Solution

Problem 19

Andrea inscribed a circle inside a regular pentagon, circumscribed a circle around the pentagon, and calculated the area of the region between the two circles. Bethany did the same with a regular heptagon (7 sides). The areas of the two regions were $A$ and $B$, respectively. Each polygon had a side length of $2$. Which of the following is true?

$\textbf{(A)}\ A = \frac {25}{49}B\qquad \textbf{(B)}\ A = \frac {5}{7}B\qquad \textbf{(C)}\ A = B\qquad \textbf{(D)}\ A$ $= \frac {7}{5}B\qquad \textbf{(E)}\ A = \frac {49}{25}B$

Solution

Problem 20

Convex quadrilateral $ABCD$ has $AB = 9$ and $CD = 12$. Diagonals $AC$ and $BD$ intersect at $E$, $AC = 14$, and $\triangle AED$ and $\triangle BEC$ have equal areas. What is $AE$?

$\textbf{(A)}\ \frac {9}{2}\qquad \textbf{(B)}\ \frac {50}{11}\qquad \textbf{(C)}\ \frac {21}{4}\qquad \textbf{(D)}\ \frac {17}{3}\qquad \textbf{(E)}\ 6$

Solution

Problem 21

Let $p(x) = x^3 + ax^2 + bx + c$, where $a$, $b$, and $c$ are complex numbers. Suppose that

\[p(2009 + 9002\pi i) = p(2009) = p(9002) = 0\]

What is the number of nonreal zeros of $x^{12} + ax^8 + bx^4 + c$?

$\textbf{(A)}\ 4\qquad \textbf{(B)}\ 6\qquad \textbf{(C)}\ 8\qquad \textbf{(D)}\ 10\qquad \textbf{(E)}\ 12$

Solution

Problem 22

A regular octahedron has side length $1$. A plane parallel to two of its opposite faces cuts the octahedron into the two congruent solids. The polygon formed by the intersection of the plane and the octahedron has area $\frac {a\sqrt {b}}{c}$, where $a$, $b$, and $c$ are positive integers, $a$ and $c$ are relatively prime, and $b$ is not divisible by the square of any prime. What is $a + b + c$?

$\textbf{(A)}\ 10\qquad \textbf{(B)}\ 11\qquad \textbf{(C)}\ 12\qquad \textbf{(D)}\ 13\qquad \textbf{(E)}\ 14$

Solution

Problem 23

Functions $f$ and $g$ are quadratic, $g(x) = - f(100 - x)$, and the graph of $g$ contains the vertex of the graph of $f$. The four $x$-intercepts on the two graphs have $x$-coordinates $x_1$, $x_2$, $x_3$, and $x_4$, in increasing order, and $x_3 - x_2 = 150$. The value of $x_4 - x_1$ is $m + n\sqrt p$, where $m$, $n$, and $p$ are positive integers, and $p$ is not divisible by the square of any prime. What is $m + n + p$?

$\textbf{(A)}\ 602\qquad \textbf{(B)}\ 652\qquad \textbf{(C)}\ 702\qquad \textbf{(D)}\ 752 \qquad \textbf{(E)}\ 802$

Solution

Problem 24

The tower function of twos is defined recursively as follows: $T(1) = 2$ and $T(n + 1) = 2^{T(n)}$ for $n\ge1$. Let $A = (T(2009))^{T(2009)}$ and $B = (T(2009))^A$. What is the largest integer $k$ such that

\[\underbrace{\log_2\log_2\log_2\ldots\log_2B}_{k\text{ times}}\]

is defined?

$\textbf{(A)}\ 2009\qquad \textbf{(B)}\ 2010\qquad \textbf{(C)}\ 2011\qquad \textbf{(D)}\ 2012\qquad \textbf{(E)}\ 2013$

Solution

Problem 25

The first two terms of a sequence are $a_1 = 1$ and $a_2 = \frac {1}{\sqrt3}$. For $n\ge1$,

\[a_{n + 2} = \frac {a_n + a_{n + 1}}{1 - a_na_{n + 1}}.\]

What is $|a_{2009}|$?

$\textbf{(A)}\ 0\qquad \textbf{(B)}\ 2 - \sqrt3\qquad \textbf{(C)}\ \frac {1}{\sqrt3}\qquad \textbf{(D)}\ 1\qquad \textbf{(E)}\ 2 + \sqrt3$

Solution