Difference between revisions of "2008 AMC 10B Problems/Problem 15"

m (Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
How many right triangles have integer leg lengths a and b and a hypotenuse of length b+1, where b<100?
+
How many right triangles have integer leg lengths <math>a</math> and <math>b</math> and a hypotenuse of length <math>b+1</math>, where <math>b<100</math>?
  
(A) 6 (B) 7 (C) 8 (D) 9 (E) 10
+
<math>\mathrm{(A)}\ 6\qquad\mathrm{(B)}\ 7\qquad\mathrm{(C)}\ 8\qquad\mathrm{(D)}\ 9\qquad\mathrm{(E)}\ 10</math>
  
 
==Solution==
 
==Solution==

Revision as of 14:58, 25 January 2009

Problem

How many right triangles have integer leg lengths $a$ and $b$ and a hypotenuse of length $b+1$, where $b<100$?

$\mathrm{(A)}\ 6\qquad\mathrm{(B)}\ 7\qquad\mathrm{(C)}\ 8\qquad\mathrm{(D)}\ 9\qquad\mathrm{(E)}\ 10$

Solution

By the pytahagorean theorem, $a^2+b^2=b^2+2b+1$

This means that $a^2=2b+1$.

We know that $a,b>0$, and that $b<100$.

We also know that a must be odd, since the right

side is odd.

So $a=3,5,7,9,11,13$, and the answer is $\boxed{A}$.

See also

2008 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions