Difference between revisions of "Stewart's Theorem"

(weird angle latex problem)
Line 10: Line 10:
 
*<math> n^{2} + t^{2} - nt\cos{\angle CDA} = b^{2} </math>
 
*<math> n^{2} + t^{2} - nt\cos{\angle CDA} = b^{2} </math>
 
*<math> m^{2} + t^{2} + mt\cos{\angle CDA} = c^{2} </math>
 
*<math> m^{2} + t^{2} + mt\cos{\angle CDA} = c^{2} </math>
When we write everything in terms of <math>\cos{\angle CDA}</math> we have:
+
When we write everything in terms of cos(CDA) we have:
 
*<math> \frac{n^2 + t^2 - b^2}{nt} = \cos{\angle CDA}</math>
 
*<math> \frac{n^2 + t^2 - b^2}{nt} = \cos{\angle CDA}</math>
 
*<math> \frac{c^2 - m^2 -t^2}{mt} = \cos{\angle CDA}</math>
 
*<math> \frac{c^2 - m^2 -t^2}{mt} = \cos{\angle CDA}</math>

Revision as of 20:38, 18 June 2006

Statement

(awaiting image)
If a cevian of length t is drawn and divides side a into segments m and n, then


$c^{2}n + b^{2}m = (m+n)(t^{2} + mn)$


Proof

For this proof we will use the law of cosines and the identity $\cos{\theta} = -\cos{180 - \theta}$.

Label the triangle $ABC$ with a cevian extending from $A$ onto $BC$, label that point $D$. Let CA = n Let DB = m. Let AD = t. We can write two equations:

  • $n^{2} + t^{2} - nt\cos{\angle CDA} = b^{2}$
  • $m^{2} + t^{2} + mt\cos{\angle CDA} = c^{2}$

When we write everything in terms of cos(CDA) we have:

  • $\frac{n^2 + t^2 - b^2}{nt} = \cos{\angle CDA}$
  • $\frac{c^2 - m^2 -t^2}{mt} = \cos{\angle CDA}$

Now we set the two equal and arrive at Stewart's theorem: $c^{2}n + b^{2}m=m^{2}n +n^{2}m + t^{2}m + t^{2}n$


Example

(awaiting addition)

See also