Difference between revisions of "2002 AMC 10B Problems/Problem 11"

(New page: == Problem == The product of three consecutive positive integers is <math>8</math> times their sum. What is the sum of the squares? <math> \mathrm{(A) \ } 50\qquad \mathrm{(B) \ } 77\qqu...)
 
(box and stuff)
Line 8: Line 8:
 
== Solution ==
 
== Solution ==
  
Let the three consecutive positive integers be <math>a-1</math>, <math>a</math>, and <math>a+1</math>. So, <math>a(a-1)(a+1)=a^3-a=24a</math>. Rearranging and factoring, <math>a(a+5)(a-5)=0</math>, so <math>a=5</math>. Hence, the sum of the squares is <math>4^2+5^2+6^2=77\Longrightarrow\mathrm{ (B) \ }</math>
+
Let the three consecutive positive integers be <math>a-1</math>, <math>a</math>, and <math>a+1</math>. So, <math>a(a-1)(a+1)=a^3-a=24a</math>. Rearranging and factoring, <math>a(a+5)(a-5)=0</math>, so <math>a=5</math>. Hence, the sum of the squares is <math>4^2+5^2+6^2=77\Longrightarrow\boxed{\mathrm{ (B) \ }}</math>.
 +
 
 +
==See Also==
 +
{{AMC10 box|year=2002|ab=B|num-b=10|num-a=12}}
 +
 
 +
[[Category:Introductory Algebra Problems]]

Revision as of 13:12, 27 December 2008

Problem

The product of three consecutive positive integers is $8$ times their sum. What is the sum of the squares?

$\mathrm{(A) \ } 50\qquad \mathrm{(B) \ } 77\qquad \mathrm{(C) \ } 110\qquad \mathrm{(D) \ } 149\qquad \mathrm{(E) \ } 194$


Solution

Let the three consecutive positive integers be $a-1$, $a$, and $a+1$. So, $a(a-1)(a+1)=a^3-a=24a$. Rearranging and factoring, $a(a+5)(a-5)=0$, so $a=5$. Hence, the sum of the squares is $4^2+5^2+6^2=77\Longrightarrow\boxed{\mathrm{ (B) \ }}$.

See Also

2002 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions