Difference between revisions of "2003 USAMO Problems/Problem 5"
m (→Problem) |
|||
Line 4: | Line 4: | ||
== Solution == | == Solution == | ||
− | {{ | + | solution by paladin8: |
+ | |||
+ | WLOG, assume <math>a + b + c = 3</math>. | ||
+ | |||
+ | Then the LHS becomes <math>\sum \frac {(a + 3)^2}{2a^2 + (3 - a)^2} = \sum \frac {a^2 + 6a + 9}{3a^2 - 6a + 9} = \sum \left(\frac {1}{3} + \frac {8a + 6}{3a^2 - 6a + 9}\right)</math>. | ||
+ | |||
+ | Notice <math>3a^2 - 6a + 9 = 3(a - 1)^2 + 6 \ge 6</math>, so <math>\frac {8a + 6}{3a^2 - 6a + 9} \le \frac {8a + 6}{6}</math>. | ||
+ | |||
+ | So <math>\sum \frac {(a + 3)^2}{2a^2 + (3 - a)^2} \le \sum \left(\frac {1}{3} + \frac {8a + 6}{6}\right) = 1 + \frac {8(a + b + c) + 18}{6} = 8</math> as desired. | ||
== Resources == | == Resources == | ||
Line 10: | Line 18: | ||
* [[2003 USAMO Problems]] | * [[2003 USAMO Problems]] | ||
* [http://www.artofproblemsolving.com/Forum/viewtopic.php?t=53672 Discussion on AOPS/MathLinks] | * [http://www.artofproblemsolving.com/Forum/viewtopic.php?t=53672 Discussion on AOPS/MathLinks] | ||
+ | * [http://www.mathlinks.ro/Forum/viewtopic.php?t=46 Discussion 2] | ||
+ | * [http://www.mathlinks.ro/Forum/viewtopic.php?t=28678 Discussion 3] | ||
+ | * [http://www.mathlinks.ro/Forum/viewtopic.php?t=43278 Discussion 4] | ||
+ | * [http://www.mathlinks.ro/Forum/viewtopic.php?t=48989 Discussion 5] | ||
[[Category:Olympiad Inequality Problems]] | [[Category:Olympiad Inequality Problems]] |
Revision as of 18:58, 18 December 2008
Problem
Let , , be positive real numbers. Prove that
Solution
solution by paladin8:
WLOG, assume .
Then the LHS becomes .
Notice , so .
So as desired.