|
|
(40 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
| <blockquote style="display:table;background:#eeeeee;padding:10px;" class="toccolours"> | | <blockquote style="display:table;background:#eeeeee;padding:10px;" class="toccolours"> |
− | ===[[Rearrangement Inequality]]===
| + | Inactive. |
− | The '''Rearrangement Inequality''' states that, if <math>A=\{a_1,a_2,\cdots,a_n\}</math> is a [[permutation]] of a [[finite]] [[set]] (in fact, [[multiset]]) of [[real number]]s and <math>B=\{b_1,b_2,\cdots,b_n\}</math> is a permutation of another finite set of real numbers, the quantity <math>a_1b_1+a_2b_2+\cdots+a_nb_n</math> is maximized when <math>{A}</math> and <math>{B} </math> are similarly sorted (that is, if <math>a_k</math> is greater than or equal to exactly <math>{i}</math> of the other members of <math>A</math>, then <math> {b_k} </math> is also greater than or equal to exactly <math>{i}</math> of the other members of <math>B</math>). Conversely, <math>a_1b_1+a_2b_2+\cdots+a_nb_n</math> is minimized when <math>A</math> and <math>B</math> are oppositely sorted (that is, if <math>a_k</math> is less than or equal
| |
| </blockquote> | | </blockquote> |