Difference between revisions of "Legendre's Formula"

m
m (correct category)
Line 9: Line 9:
  
 
{{stub}}
 
{{stub}}
[[Category:Number Theory]]
+
[[Category:Number theory]]
 
[[Category:Theorems]]
 
[[Category:Theorems]]
 
[[Category:Definition]]
 
[[Category:Definition]]

Revision as of 18:32, 4 September 2008

Legendre's Formula states that

\[e_p(n)=\sum_{i\geq 1} \left\lfloor \dfrac{n}{p^i}\right\rfloor =\frac{n-S_{p}(n)}{p-1}\]

where $e_p(n)$ is the exponent of $p$ in the prime factorization of $n!$ and $S_p(n)$ is the sum of the digits of $n$ when written in base $p$.

Proof

Template:Incomplete

This article is a stub. Help us out by expanding it.