Difference between revisions of "2000 AIME II Problems/Problem 8"
m (→See also) |
(tex) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | In trapezoid <math>ABCD</math>, leg <math>\overline{BC}</math> is perpendicular to bases <math>\overline{AB}</math> and <math>\overline{CD}</math>, and diagonals <math>\overline{AC}</math> and <math>\overline{BD}</math> are perpendicular. Given that <math>AB=\sqrt{11}</math> and <math>AD=\sqrt{1001}</math>, find <math>BC^2</math>. | + | In [[trapezoid]] <math>ABCD</math>, leg <math>\overline{BC}</math> is [[perpendicular]] to bases <math>\overline{AB}</math> and <math>\overline{CD}</math>, and diagonals <math>\overline{AC}</math> and <math>\overline{BD}</math> are perpendicular. Given that <math>AB=\sqrt{11}</math> and <math>AD=\sqrt{1001}</math>, find <math>BC^2</math>. |
== Solution == | == Solution == | ||
− | + | Let <math>x = BC</math> be the height of the trapezoid, and let <math>y = CD</math>. Since <math>AC \perp BD</math>, it follows that <math>\triangle BAC \sim \triangle CBD</math>, so <math>\frac{x}{\sqrt{11}} = \frac{y}{x} \Longrightarrow x^2 = y\sqrt{11}</math>. | |
+ | Let <math>E</math> be the foot of the altitude from <math>A</math> to <math>\overline{CD}</math>. Then <math>AE = x</math>, and <math>ADE</math> is a [[right triangle]]. By the [[Pythagorean Theorem]], | ||
+ | |||
+ | <cmath>x^2 + \left(y-\sqrt{11}\right)^2 = 1001 \Longrightarrow x^4 - 11x^2 - 11^2 \cdot 9 \cdot 10 = 0</cmath> | ||
+ | |||
+ | The positive solution to this [[quadratic equation]] is <math>x^2 = \boxed{110}</math>. | ||
+ | |||
+ | <center><asy> | ||
+ | size(200); pathpen = linewidth(0.7); | ||
+ | pair C=(0,0),B=(0,110^.5),A=(11^.5,B.y),D=(10*11^.5,0),E=foot(A,C,D); | ||
+ | D(MP("A",A,(2,.5))--MP("B",B,W)--MP("C",C)--MP("D",D)--cycle); D(A--C);D(B--D);D(A--E,linetype("4 4") + linewidth(0.7)); | ||
+ | MP("\sqrt{11}",(A+B)/2,N);MP("\sqrt{1001}",(A+D)/2,NE);MP("\sqrt{1001}",(A+D)/2,NE);MP("x",(B+C)/2,W);MP("y",(D+C)/2);D(rightanglemark(B,IP(A--C,B--D),C,20)); | ||
+ | </asy></center> | ||
+ | |||
+ | == See also == | ||
{{AIME box|year=2000|n=II|num-b=7|num-a=9}} | {{AIME box|year=2000|n=II|num-b=7|num-a=9}} | ||
+ | |||
+ | [[Category:Intermediate Geometry Problems]] |
Revision as of 09:16, 30 August 2008
Problem
In trapezoid , leg is perpendicular to bases and , and diagonals and are perpendicular. Given that and , find .
Solution
Let be the height of the trapezoid, and let . Since , it follows that , so .
Let be the foot of the altitude from to . Then , and is a right triangle. By the Pythagorean Theorem,
The positive solution to this quadratic equation is .
See also
2000 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 7 |
Followed by Problem 9 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |