Difference between revisions of "Routh's Theorem"
(New page: In triangle <math>ABC</math>, <math>D</math>, <math>E</math> and <math>F</math> are points on sides <math>BC</math>, <math>AC</math>, and <math>AB</math>, respectively. Let <math>r=\frac{A...) |
(please fix image, I gtg) |
||
Line 2: | Line 2: | ||
<cmath>[GHI]=\dfrac{(rst-1)^2}{(rs+r+1)(st+s+1)(tr+t+1)}[ABC]</cmath> | <cmath>[GHI]=\dfrac{(rst-1)^2}{(rs+r+1)(st+s+1)(tr+t+1)}[ABC]</cmath> | ||
+ | |||
+ | <asy> | ||
+ | unitsize(5); | ||
+ | pair A,B,C,D,E,F,G,H,I; | ||
+ | A=(10,20); | ||
+ | B=(0,0); | ||
+ | C=(30,0); | ||
+ | D=(20,0); | ||
+ | E=(16.66,13.33); | ||
+ | F=(5,10); | ||
+ | G=(14.585,11.6298); | ||
+ | H=(9.998,8); | ||
+ | I=(17.5,5); | ||
+ | draw(A--B); | ||
+ | draw(B--C); | ||
+ | draw(C--A); | ||
+ | draw(A--D); | ||
+ | draw(B--E); | ||
+ | draw(C--F); | ||
+ | label("$A$",A,N); | ||
+ | label("$B$",B,SW); | ||
+ | label("$C$",C,SE); | ||
+ | label("$D$",D,S); | ||
+ | label("$E$",E,NE); | ||
+ | label("$F$",F,NW); | ||
+ | label("$G$",G,N); | ||
+ | label("$H$",H,N); | ||
+ | label("$I$",I,SW);</asy> | ||
==Proof== | ==Proof== |
Revision as of 14:19, 4 August 2008
In triangle , , and are points on sides , , and , respectively. Let , , and . Let be the intersection of and , be the intersection of and , and be the intersection of and . Thus
Proof
This article is a stub. Help us out by expanding it.