Difference between revisions of "1995 AIME Problems/Problem 5"

m
(solution)
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
For certain real values of <math>\displaystyle a, b, c,</math> and <math>\displaystyle d_{},</math>  the equation <math>\displaystyle x^4+ax^3+bx^2+cx+d=0</math> has four non-real roots.  The product of two of these roots is <math>\displaystyle 13+i</math> and the sum of the other two roots is <math>\displaystyle 3+4i,</math> where <math>i=\sqrt{-1}.</math>  Find <math>\displaystyle b.</math>
+
For certain real values of <math>a, b, c,</math> and <math>d_{},</math>  the equation <math>x^4+ax^3+bx^2+cx+d=0</math> has four non-real roots.  The product of two of these roots is <math>13+i</math> and the sum of the other two roots is <math>3+4i,</math> where <math>i=\sqrt{-1}.</math>  Find <math>b.</math>
  
 
== Solution ==
 
== Solution ==
 +
Since the [[coefficient]]s of the [[polynomial]] are real, it follows that the non-real roots must come in [[complex conjugate]] pairs. Let the first two roots be <math>m,n</math>. Since <math>m+n</math> is not real, <math>m,n</math> are not conjugates, so the other pair of roots must be the conjugates of <math>m,n</math>. Let <math>m'</math> be the conjugate of <math>m</math>, and <math>n'</math> be the conjugate of <math>n</math>. Then,
 +
<cmath>m\cdot n = 13 + i,m' + n' = 3 + 4i\Longrightarrow m'\cdot n' = 13 - i,m + n = 3 - 4i.</cmath>
 +
By [[Vieta's formulas]], we have that <math>b = mm' + nn' + mn' + nm' + mn + m'n' = (m + n)(m' + n') + mn + m'n' = \boxed{051}</math>.
  
 
== See also ==
 
== See also ==
* [[1995_AIME_Problems/Problem_4|Previous Problem]]
+
{{AIME box|year=1995|num-b=4|num-a=6|t=394478}}
* [[1995_AIME_Problems/Problem_6|Next Problem]]
+
 
* [[1995 AIME Problems]]
+
[[Category:Intermediate Algebra Problems]]

Revision as of 10:12, 18 June 2008

Problem

For certain real values of $a, b, c,$ and $d_{},$ the equation $x^4+ax^3+bx^2+cx+d=0$ has four non-real roots. The product of two of these roots is $13+i$ and the sum of the other two roots is $3+4i,$ where $i=\sqrt{-1}.$ Find $b.$

Solution

Since the coefficients of the polynomial are real, it follows that the non-real roots must come in complex conjugate pairs. Let the first two roots be $m,n$. Since $m+n$ is not real, $m,n$ are not conjugates, so the other pair of roots must be the conjugates of $m,n$. Let $m'$ be the conjugate of $m$, and $n'$ be the conjugate of $n$. Then, \[m\cdot n = 13 + i,m' + n' = 3 + 4i\Longrightarrow m'\cdot n' = 13 - i,m + n = 3 - 4i.\] By Vieta's formulas, we have that $b = mm' + nn' + mn' + nm' + mn + m'n' = (m + n)(m' + n') + mn + m'n' = \boxed{051}$.

See also

1995 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions