Difference between revisions of "User:Temperal/Inequalities"

(latex)
(Undo revision 26455 by Temperal (Talk))
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
'''Problem (me):''' Prove for <math>x,y,z\in\mathbb{R}^ + ,x + y + z = \frac {1}{2}</math> that
 
'''Problem (me):''' Prove for <math>x,y,z\in\mathbb{R}^ + ,x + y + z = \frac {1}{2}</math> that
\[
+
<cmath>
 
\left(\sum_{sym}\frac {x}{y}\right)\left(\sqrt {2x^2 + 2y^2 + 2z^2}\right)\ge 1
 
\left(\sum_{sym}\frac {x}{y}\right)\left(\sqrt {2x^2 + 2y^2 + 2z^2}\right)\ge 1
\]
+
</cmath>
  
  
 
'''Solution (Altheman):''' By [[AM-GM]], <math>\sum_{sym}\ge 6</math>, and my [[Root-Mean Square-Arithmetic Mean-Geometric Mean-Harmonic mean Inequality|RMS-AM]] <math>\sqrt {2x^2 + 2y^2 + 2z^2}\ge 1</math>, thus the inequality is true.
 
'''Solution (Altheman):''' By [[AM-GM]], <math>\sum_{sym}\ge 6</math>, and my [[Root-Mean Square-Arithmetic Mean-Geometric Mean-Harmonic mean Inequality|RMS-AM]] <math>\sqrt {2x^2 + 2y^2 + 2z^2}\ge 1</math>, thus the inequality is true.
  
'''Solution (me):''' By [[Jensen's Inequality]], <math>\sum_{sym}\ge \frac{1}{\sum\limits_{sym}x\sqrt{y}}</math> and by the [[Cauchy-Schwartz Inequality]], <math>\frac{1}{\sum\limits_{sym}x\sqrt{y}}\ge\frac{1}{\sqrt {(2x^2 + 2y^2 + 2z^2)(2x+2y+2z)}=\frac{1}{\sqrt {2x^2 + 2y^2 + 2z^2}}</math>
+
'''Solution (me):''' By [[Jensen's Inequality]], <math>\sum_{sym}\ge \frac{1}{\sum\limits_{sym}x\sqrt{y}}</math> and by the [[Cauchy-Schwarz Inequality]], <math>\frac{1}{\sum\limits_{sym}x\sqrt{y}}\ge\frac{1}{\sqrt{(2x^2 + 2y^2 + 2z^2)(2x+2y+2z)}}=\frac{1}{\sqrt{2x^2 + 2y^2 + 2z^2}}</math>

Latest revision as of 12:01, 11 June 2008

Problem (me): Prove for $x,y,z\in\mathbb{R}^ + ,x + y + z = \frac {1}{2}$ that \[\left(\sum_{sym}\frac {x}{y}\right)\left(\sqrt {2x^2 + 2y^2 + 2z^2}\right)\ge 1\]


Solution (Altheman): By AM-GM, $\sum_{sym}\ge 6$, and my RMS-AM $\sqrt {2x^2 + 2y^2 + 2z^2}\ge 1$, thus the inequality is true.

Solution (me): By Jensen's Inequality, $\sum_{sym}\ge \frac{1}{\sum\limits_{sym}x\sqrt{y}}$ and by the Cauchy-Schwarz Inequality, $\frac{1}{\sum\limits_{sym}x\sqrt{y}}\ge\frac{1}{\sqrt{(2x^2 + 2y^2 + 2z^2)(2x+2y+2z)}}=\frac{1}{\sqrt{2x^2 + 2y^2 + 2z^2}}$