Difference between revisions of "2008 AMC 12A Problems/Problem 13"

m (Added \Rightarrow \mathbf{(B)})
(Duplicate, standardized answer choices, added AMC 10 box, style)
Line 1: Line 1:
 +
{{duplicate|[[2008 AMC 12A Problems|2008 AMC 12A #13]] and [[2008 AMC 10A Problems/Problem 16|2008 AMC 10A #16]]}}
 
== Problem ==
 
== Problem ==
 
Points <math>A</math> and <math>B</math> lie on a [[circle]] centered at <math>O</math>, and <math>\angle AOB = 60^\circ</math>. A second circle is internally [[tangent]] to the first and tangent to both <math>\overline{OA}</math> and <math>\overline{OB}</math>. What is the ratio of the area of the smaller circle to that of the larger circle?
 
Points <math>A</math> and <math>B</math> lie on a [[circle]] centered at <math>O</math>, and <math>\angle AOB = 60^\circ</math>. A second circle is internally [[tangent]] to the first and tangent to both <math>\overline{OA}</math> and <math>\overline{OB}</math>. What is the ratio of the area of the smaller circle to that of the larger circle?
  
<math>\textbf{(A)}\ \frac {1}{16} \qquad \textbf{(B)}\ \frac {1}{9} \qquad \textbf{(C)}\ \frac {1}{8} \qquad \textbf{(D)}\ \frac {1}{6} \qquad \textbf{(E)}\ \frac {1}{4}</math>
+
<math>\mathrm{(A)}\ \frac{1}{16}\qquad\mathrm{(B)}\ \frac{1}{9}\qquad\mathrm{(C)}\ \frac{1}{8}\qquad\mathrm{(D)}\ \frac{1}{6}\qquad\mathrm{(E)}\ \frac{1}{4}</math>
  
 
== Solution ==
 
== Solution ==
Line 33: Line 34:
  
 
== See also ==
 
== See also ==
{{AMC12 box|year=2008|num-b=12|num-a=14|ab=A}}
+
{{AMC12 box|year=2008|ab=A|num-b=12|num-a=14}}
 +
{{AMC10 box|year=2008|ab=A|num-b=15|num-a=17}}
  
 
[[Category:Introductory Geometry Problems]]
 
[[Category:Introductory Geometry Problems]]

Revision as of 00:22, 26 April 2008

The following problem is from both the 2008 AMC 12A #13 and 2008 AMC 10A #16, so both problems redirect to this page.

Problem

Points $A$ and $B$ lie on a circle centered at $O$, and $\angle AOB = 60^\circ$. A second circle is internally tangent to the first and tangent to both $\overline{OA}$ and $\overline{OB}$. What is the ratio of the area of the smaller circle to that of the larger circle?

$\mathrm{(A)}\ \frac{1}{16}\qquad\mathrm{(B)}\ \frac{1}{9}\qquad\mathrm{(C)}\ \frac{1}{8}\qquad\mathrm{(D)}\ \frac{1}{6}\qquad\mathrm{(E)}\ \frac{1}{4}$

Solution

[asy] size(300); defaultpen(0.8); pair O=(0,0), A=(3,0), B=(3/2,3/2*3^.5), C=(3^.5,1), D=(3^.5,0), F=(1.5*3^.5,1.5); picture p = new picture;  draw(p,Circle(O,0.2)); clip(p,O--C--A--cycle); add(p); draw(Circle(O,3)); dot(A); dot(B); dot(C); dot(O); draw(A--O--B); draw(O--C--D); draw(C--F); draw(D-(0.2,0)--D-(0.2,-0.2)--D-(0,-0.2)); draw(Circle(C,1)); label("\(30^{\circ}\)",(.53,.1),O); label("\(r\)",(C+D)/2,E); label("\(2r\)",(O+C)/2,SE); label("\(O\)",O,SW); label("\(r\)",(C+F)/2,SE); label("\(R\)",(O+A)/2-(0,0.3),S); label("\(P\)",C,NW); label("\(Q\)",D,SE); [/asy]

Let $P$ be the center of the small circle with radius $r$, and let $Q$ be the point where the small circle is tangent to $OA$, and finally, let $C$ be the point where the small circle is tangent to the big circle with radius $R$. Then $PQO$ is a right triangle, and a 30-60-90 triangle at that. So, $OP = 2PQ$. Since $OP = OC - PC = OC - r = R - r$, we have $R - r = 2PQ$, or $R - r = 2r$, or $\frac {1}{3} = \frac {r}{R}$. Then the ratio of areas will be $\frac {1}{3}$ squared, or $\frac {1}{9} \Rightarrow \mathbf{(B)}$.

See also

2008 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2008 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 15
Followed by
Problem 17
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions