Difference between revisions of "1983 AIME Problems/Problem 11"
I like pie (talk | contribs) (Undo revision by I like pie (Talk)) |
(+3d asymptote) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | The solid shown has a [[square]] base of side length <math>s</math>. The upper edge is [[parallel]] to the base and has length <math>2s</math>. All edges have length <math>s</math>. Given that <math>s=6\sqrt{2}</math>, what is the volume of the solid? | + | The solid shown has a [[square]] base of side length <math>s</math>. The upper edge is [[parallel]] to the base and has length <math>2s</math>. All other edges have length <math>s</math>. Given that <math>s=6\sqrt{2}</math>, what is the volume of the solid? |
− | + | <center><asy> | |
− | + | size(180); | |
− | </asy></center> -- | + | import three; pathpen = black+linewidth(0.65); pointpen = black; |
− | + | currentprojection = perspective(30,-20,10); | |
+ | real s = 6 * 2^.5; | ||
+ | triple A=(0,0,0),B=(s,0,0),C=(s,s,0),D=(0,s,0),E=(-s/2,s/2,6),F=(3*s/2,s/2,6); | ||
+ | D(A--B--C--D--A--E--D); D(B--F--C); D(E--F); | ||
+ | MP("A",A);MP("B",B);MP("C",C);MP("D",D);MP("E",E,N);MP("F",F,N); | ||
+ | </asy></center> <!-- Asymptote replacement for Image:1983Number11.JPG by bpms --> | ||
== Solution == | == Solution == | ||
First, we find the height of the figure by drawing a [[perpendicular]] from the midpoint of <math>AD</math> to <math>EF</math>. The [[hypotenuse]] of the triangle is the [[median]] of [[equilateral triangle]] <math>ADE</math> one of the legs is <math>3\sqrt{2}</math>. We apply the [[Pythagorean Theorem]] to find that the height is equal to <math>6</math>. | First, we find the height of the figure by drawing a [[perpendicular]] from the midpoint of <math>AD</math> to <math>EF</math>. The [[hypotenuse]] of the triangle is the [[median]] of [[equilateral triangle]] <math>ADE</math> one of the legs is <math>3\sqrt{2}</math>. We apply the [[Pythagorean Theorem]] to find that the height is equal to <math>6</math>. | ||
− | + | <center><asy> | |
+ | size(180); | ||
+ | import three; pathpen = black+linewidth(0.65); pointpen = black; pen d = linewidth(0.65); pen l = linewidth(0.5); | ||
+ | currentprojection = perspective(30,-20,10); | ||
+ | real s = 6 * 2^.5; | ||
+ | triple A=(0,0,0),B=(s,0,0),C=(s,s,0),D=(0,s,0),E=(-s/2,s/2,6),F=(3*s/2,s/2,6); | ||
+ | triple Aa=(E.x,0,0),Ba=(F.x,0,0),Ca=(F.x,s,0),Da=(E.x,s,0); | ||
+ | D(A--B--C--D--A--E--D); D(B--F--C); D(E--F); | ||
+ | D(B--Ba--Ca--C,dashed+d);D(A--Aa--Da--D,dashed+d);D(E--(E.x,E.y,0),dashed+l);D(F--(F.x,F.y,0),dashed+l); | ||
+ | D(Aa--E--Da,dashed+d); D(Ba--F--Ca,dashed+d); | ||
+ | MP("A",A);MP("B",B);MP("C",C);MP("D",D);MP("E",E,N);MP("F",F,N);MP("12\sqrt{2}",(E+F)/2,N);MP("6\sqrt{2}",(A+B)/2);MP("6",(3*s/2,s/2,3),ENE); | ||
+ | </asy></center> | ||
Next, we complete the figure into a triangular prism, and find the area, which is <math>\frac{6\sqrt{2}\cdot 12\sqrt{2}\cdot 6}{2}=432</math>. | Next, we complete the figure into a triangular prism, and find the area, which is <math>\frac{6\sqrt{2}\cdot 12\sqrt{2}\cdot 6}{2}=432</math>. | ||
Revision as of 17:28, 25 April 2008
Problem
The solid shown has a square base of side length . The upper edge is parallel to the base and has length . All other edges have length . Given that , what is the volume of the solid?
size(180); import three; pathpen = black+linewidth(0.65); pointpen = black; currentprojection = perspective(30,-20,10); real s = 6 * 2^.5; triple A=(0,0,0),B=(s,0,0),C=(s,s,0),D=(0,s,0),E=(-s/2,s/2,6),F=(3*s/2,s/2,6); D(A--B--C--D--A--E--D); D(B--F--C); D(E--F); MP("A",A);MP("B",B);MP("C",C);MP("D",D);MP("E",E,N);MP("F",F,N); (Error making remote request. Unknown error_msg)
Solution
First, we find the height of the figure by drawing a perpendicular from the midpoint of to . The hypotenuse of the triangle is the median of equilateral triangle one of the legs is . We apply the Pythagorean Theorem to find that the height is equal to .
size(180); import three; pathpen = black+linewidth(0.65); pointpen = black; pen d = linewidth(0.65); pen l = linewidth(0.5); currentprojection = perspective(30,-20,10); real s = 6 * 2^.5; triple A=(0,0,0),B=(s,0,0),C=(s,s,0),D=(0,s,0),E=(-s/2,s/2,6),F=(3*s/2,s/2,6); triple Aa=(E.x,0,0),Ba=(F.x,0,0),Ca=(F.x,s,0),Da=(E.x,s,0); D(A--B--C--D--A--E--D); D(B--F--C); D(E--F); D(B--Ba--Ca--C,dashed+d);D(A--Aa--Da--D,dashed+d);D(E--(E.x,E.y,0),dashed+l);D(F--(F.x,F.y,0),dashed+l); D(Aa--E--Da,dashed+d); D(Ba--F--Ca,dashed+d); MP("A",A);MP("B",B);MP("C",C);MP("D",D);MP("E",E,N);MP("F",F,N);MP("12\sqrt{2}",(E+F)/2,N);MP("6\sqrt{2}",(A+B)/2);MP("6",(3*s/2,s/2,3),ENE); (Error making remote request. Unknown error_msg)
Next, we complete the figure into a triangular prism, and find the area, which is .
Now, we subtract off the two extra pyramids that we included, whose combined area is .
Thus, our answer is .
See also
1983 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |