Difference between revisions of "1984 AIME Problems/Problem 9"
m (meh 3D asy is difficult) |
(replace with 3d asymptote) |
||
Line 3: | Line 3: | ||
== Solution == | == Solution == | ||
− | < | + | <span style="font-size:50%">For non-asymptote version of image, see [[:Image:1984_AIME-9.png]].</span><center><asy> |
− | import three; pointpen=black;pathpen=black; | + | size(200); |
− | triple A=(0,0,0),B=(3,0,0),C=( | + | import three; pointpen=black;pathpen=black+linewidth(0.6); pen small = fontsize(10); |
− | + | triple A=(0,0,0),B=(3,0,0),C=(1.8,10,0),D=(1.5,4,4),Da=(D.x,D.y,0),Db=(D.x,0,0); | |
− | + | currentprojection=perspective(16,-10,8); | |
− | |||
− | |||
− | |||
− | Position face <math>ABC</math> on the bottom. Since <math>[\triangle ABD] = 12 = \frac{1}{2} \cdot AB \cdot h_{ABD}</math>, we find that <math>h_{ABD} = 8</math>. The height of <math>ABD</math> forms a <math>30-60-90</math> with the height of the tetrahedron, so <math>h = \frac{1}{2} 8 = 4</math>. The volume of the tetrahedron is thus <math>\frac{1}{3}Bh = \frac{1}{3} 15 \cdot 4 = \boxed{020}</math>. | + | /* draw pyramid - other lines + angles */ |
+ | D(A--B--C--A--D--B--D--C); | ||
+ | D(D--Da--Db--cycle);D(rightanglemark(D,Da,Db));D(rightanglemark(A,Db,D));D(anglemark(Da,Db,D,12)); | ||
+ | |||
+ | /* labeling points */ | ||
+ | MP("A",A);MP("B",B);MP("C",C);MP("D",D,N);MP("30^{\circ}",Db+(0,.35,0.08),NE,small); | ||
+ | MP("3",(A+B)/2); MP("15\mathrm{cm}^2",(Db+C)/2+(0,-0.5,-0.1),NE,small); MP("12\mathrm{cm}^2",(A+D)/2,NW,small); | ||
+ | </asy></center> | ||
+ | |||
+ | Position face <math>ABC</math> on the bottom. Since <math>[\triangle ABD] = 12 = \frac{1}{2} \cdot AB \cdot h_{ABD}</math>, we find that <math>h_{ABD} = 8</math>. The height of <math>ABD</math> forms a <math>30-60-90</math> with the height of the tetrahedron, so <math>h = \frac{1}{2} (8) = 4</math>. The volume of the tetrahedron is thus <math>\frac{1}{3}Bh = \frac{1}{3} 15 \cdot 4 = \boxed{020}</math>. | ||
== See also == | == See also == |
Revision as of 20:06, 24 April 2008
Problem
In tetrahedron , edge has length 3 cm. The area of face is and the area of face is . These two faces meet each other at a angle. Find the volume of the tetrahedron in .
Solution
For non-asymptote version of image, see Image:1984_AIME-9.png.
size(200); import three; pointpen=black;pathpen=black+linewidth(0.6); pen small = fontsize(10); triple A=(0,0,0),B=(3,0,0),C=(1.8,10,0),D=(1.5,4,4),Da=(D.x,D.y,0),Db=(D.x,0,0); currentprojection=perspective(16,-10,8); /* draw pyramid - other lines + angles */ D(A--B--C--A--D--B--D--C); D(D--Da--Db--cycle);D(rightanglemark(D,Da,Db));D(rightanglemark(A,Db,D));D(anglemark(Da,Db,D,12)); /* labeling points */ MP("A",A);MP("B",B);MP("C",C);MP("D",D,N);MP("30^{\circ}",Db+(0,.35,0.08),NE,small); MP("3",(A+B)/2); MP("15\mathrm{cm}^2",(Db+C)/2+(0,-0.5,-0.1),NE,small); MP("12\mathrm{cm}^2",(A+D)/2,NW,small); (Error making remote request. Unknown error_msg)
Position face on the bottom. Since , we find that . The height of forms a with the height of the tetrahedron, so . The volume of the tetrahedron is thus .
See also
1984 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 8 |
Followed by Problem 10 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |