Difference between revisions of "2004 AMC 10A Problems/Problem 9"

(Dat wash wong.)
(redir)
 
Line 1: Line 1:
==Problem==
+
#redirect [[2004 AMC 12A Problems/Problem 8]]
In the figure, <math>\angle EAB</math> and <math>\angle ABC</math> are right angles. <math>AB=4, BC=6, AE=8</math>, and <math>AC</math> and <math>BE</math> intersect at <math>D</math>. What is the difference between the areas of <math>\triangle ADE</math> and <math>\triangle BDC</math>?
 
 
 
<center>[[Image:AMC10_2004A_9.gif]]</center>
 
 
 
<math> \mathrm{(A) \ } 2 \qquad \mathrm{(B) \ } 4 \qquad \mathrm{(C) \ } 5 \qquad \mathrm{(D) \ } 8 \qquad \mathrm{(E) \ } 9  </math>
 
 
 
==Solution==
 
Let the area of <math>[ADE]=a</math>, <math>[ADB]=b</math>, <math>[DBC]=c</math>.
 
 
 
<math>[ADE]-[DBC]=a-c=a+b-c-b=[ABE]-[ABC]=\dfrac{8\cdot 4}{2}-\dfrac{6\cdot 4}{2}=4\Rightarrow \boxed{\mathrm{(B)}}</math>
 
== See also ==
 
* [http://www.artofproblemsolving.com/Forum/viewtopic.php?t=131320 AoPS topic]
 
{{AMC10 box|year=2004|ab=A|num-b=8|num-a=10}}
 

Latest revision as of 20:57, 23 April 2008