Difference between revisions of "2025 AIME II Problems/Problem 6"
(→Problem) |
(→Problem) |
||
Line 2: | Line 2: | ||
Circle <math>\omega_1</math> with radius <math>6</math> centered at point <math>A</math> is internally tangent at point <math>B</math> to circle <math>\omega_2</math> with radius <math>15</math>. Points <math>C</math> and <math>D</math> lie on <math>\omega_2</math> such that <math>\overline{BC}</math> is a diameter of <math>\omega_2</math> and <math>\overline{BC} \perp \overline{AD}</math>. The rectangle <math>EFGH</math> is inscribed in <math>\omega_1</math> such that <math>\overline{EF} \perp \overline{BC}</math>, <math>C</math> is closer to <math>\overline{GH}</math> than to <math>\overline{EF}</math>, and <math>D</math> is closer to <math>\overline{FG}</math> than to <math>\overline{EH}</math>, as shown. Triangles <math>\triangle DGF</math> and <math>\triangle CHG</math> have equal areas. The area of rectangle <math>EFGH</math> is <math>\frac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. | Circle <math>\omega_1</math> with radius <math>6</math> centered at point <math>A</math> is internally tangent at point <math>B</math> to circle <math>\omega_2</math> with radius <math>15</math>. Points <math>C</math> and <math>D</math> lie on <math>\omega_2</math> such that <math>\overline{BC}</math> is a diameter of <math>\omega_2</math> and <math>\overline{BC} \perp \overline{AD}</math>. The rectangle <math>EFGH</math> is inscribed in <math>\omega_1</math> such that <math>\overline{EF} \perp \overline{BC}</math>, <math>C</math> is closer to <math>\overline{GH}</math> than to <math>\overline{EF}</math>, and <math>D</math> is closer to <math>\overline{FG}</math> than to <math>\overline{EH}</math>, as shown. Triangles <math>\triangle DGF</math> and <math>\triangle CHG</math> have equal areas. The area of rectangle <math>EFGH</math> is <math>\frac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. | ||
− | + | <asy> | |
size(5cm); | size(5cm); | ||
defaultpen(fontsize(10pt)); | defaultpen(fontsize(10pt)); | ||
Line 24: | Line 24: | ||
dot(H); | dot(H); | ||
− | label(" | + | label("$A$", A, (.8, -.8)); |
− | label(" | + | label("$B$", B, (.8, 0)); |
− | label(" | + | label("$C$", C, (-.8, 0)); |
− | label(" | + | label("$D$", D, (.4, .8)); |
− | label(" | + | label("$E$", E, (.8, -.8)); |
− | label(" | + | label("$F$", F, (.8, .8)); |
− | label(" | + | label("$G$", G, (-.8, .8)); |
− | label(" | + | label("$H$", H, (-.8, -.8)); |
− | label(" | + | label("$\omega_1$", (9, -5)); |
− | label(" | + | label("$\omega_2$", (-1, -13.5)); |
− | + | </asy> | |
== Solution == | == Solution == |
Revision as of 00:59, 14 February 2025
Problem
Circle with radius
centered at point
is internally tangent at point
to circle
with radius
. Points
and
lie on
such that
is a diameter of
and
. The rectangle
is inscribed in
such that
,
is closer to
than to
, and
is closer to
than to
, as shown. Triangles
and
have equal areas. The area of rectangle
is
, where
and
are relatively prime positive integers. Find
.