Difference between revisions of "2025 AIME II Problems/Problem 6"
(→Problem) |
(→Problem) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
Circle <math>\omega_1</math> with radius <math>6</math> centered at point <math>A</math> is internally tangent at point <math>B</math> to circle <math>\omega_2</math> with radius <math>15</math>. Points <math>C</math> and <math>D</math> lie on <math>\omega_2</math> such that <math>\overline{BC}</math> is a diameter of <math>\omega_2</math> and <math>\overline{BC} \perp \overline{AD}</math>. The rectangle <math>EFGH</math> is inscribed in <math>\omega_1</math> such that <math>\overline{EF} \perp \overline{BC}</math>, <math>C</math> is closer to <math>\overline{GH}</math> than to <math>\overline{EF}</math>, and <math>D</math> is closer to <math>\overline{FG}</math> than to <math>\overline{EH}</math>, as shown. Triangles <math>\triangle DGF</math> and <math>\triangle CHG</math> have equal areas. The area of rectangle <math>EFGH</math> is <math>\frac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. | Circle <math>\omega_1</math> with radius <math>6</math> centered at point <math>A</math> is internally tangent at point <math>B</math> to circle <math>\omega_2</math> with radius <math>15</math>. Points <math>C</math> and <math>D</math> lie on <math>\omega_2</math> such that <math>\overline{BC}</math> is a diameter of <math>\omega_2</math> and <math>\overline{BC} \perp \overline{AD}</math>. The rectangle <math>EFGH</math> is inscribed in <math>\omega_1</math> such that <math>\overline{EF} \perp \overline{BC}</math>, <math>C</math> is closer to <math>\overline{GH}</math> than to <math>\overline{EF}</math>, and <math>D</math> is closer to <math>\overline{FG}</math> than to <math>\overline{EH}</math>, as shown. Triangles <math>\triangle DGF</math> and <math>\triangle CHG</math> have equal areas. The area of rectangle <math>EFGH</math> is <math>\frac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. | ||
− | [ | + | |
+ | [asy] size(5cm); defaultpen(fontsize(10pt)); pair A = (9, 0), B = (15, 0), C = (-15, 0), D = (9, 12), E = (9+12/sqrt(5), -6/sqrt(5)), F = (9+12/sqrt(5), 6/sqrt(5)), G = (9-12/sqrt(5), 6/sqrt(5)), H = (9-12/sqrt(5), -6/sqrt(5)); filldraw(G--H--C--cycle, lightgray); filldraw(D--G--F--cycle, lightgray); draw(B--C); draw(A--D); draw(E--F--G--H--cycle); draw(circle((0,0), 15)); draw(circle(A, 6)); dot(A); dot(B); dot(C); dot(D); dot(E); dot(F); dot(G); dot(H); label("<math>A</math>", A, (.8, -.8)); label("<math>B</math>", B, (.8, 0)); label("<math>C</math>", C, (-.8, 0)); label("<math>D</math>", D, (.4, .8)); label("<math>E</math>", E, (.8, -.8)); label("<math>F</math>", F, (.8, .8)); label("<math>G</math>", G, (-.8, .8)); label("<math>H</math>", H, (-.8, -.8)); label("<math>\omega_1</math>", (9, -5)); label("<math>\omega_2</math>", (-1, -13.5)); [/asy] | ||
== Solution == | == Solution == |
Revision as of 00:54, 14 February 2025
Problem
Circle with radius
centered at point
is internally tangent at point
to circle
with radius
. Points
and
lie on
such that
is a diameter of
and
. The rectangle
is inscribed in
such that
,
is closer to
than to
, and
is closer to
than to
, as shown. Triangles
and
have equal areas. The area of rectangle
is
, where
and
are relatively prime positive integers. Find
.
[asy] size(5cm); defaultpen(fontsize(10pt)); pair A = (9, 0), B = (15, 0), C = (-15, 0), D = (9, 12), E = (9+12/sqrt(5), -6/sqrt(5)), F = (9+12/sqrt(5), 6/sqrt(5)), G = (9-12/sqrt(5), 6/sqrt(5)), H = (9-12/sqrt(5), -6/sqrt(5)); filldraw(G--H--C--cycle, lightgray); filldraw(D--G--F--cycle, lightgray); draw(B--C); draw(A--D); draw(E--F--G--H--cycle); draw(circle((0,0), 15)); draw(circle(A, 6)); dot(A); dot(B); dot(C); dot(D); dot(E); dot(F); dot(G); dot(H); label("", A, (.8, -.8)); label("
", B, (.8, 0)); label("
", C, (-.8, 0)); label("
", D, (.4, .8)); label("
", E, (.8, -.8)); label("
", F, (.8, .8)); label("
", G, (-.8, .8)); label("
", H, (-.8, -.8)); label("
", (9, -5)); label("
", (-1, -13.5)); [/asy]