Difference between revisions of "2025 AIME II Problems/Problem 2"
(→Solution 1) |
(→Problem) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
Find the sum of all positive integers <math>n</math> such that <math>n + 2</math> divides the product <math>3(n + 3)(n^2 + 9)</math>. | Find the sum of all positive integers <math>n</math> such that <math>n + 2</math> divides the product <math>3(n + 3)(n^2 + 9)</math>. | ||
+ | |||
+ | ==Solution 1== | ||
+ | <math>\frac{3(n+3)(n^{2}+9) }{n+2} \in Z</math> | ||
+ | |||
+ | <math>\Rightarrow \frac{3(n+2+1)(n^{2}+9) }{n+2} \in Z</math> | ||
+ | |||
+ | <math>\Rightarrow \frac{3(n+2)(n^{2}+9) +3(n^{2}+9)}{n+2} \in Z</math> | ||
+ | |||
+ | <math>\Rightarrow 3(n^{2}+9)+\frac{3(n^{2}+9)}{n+2} \in Z</math> | ||
+ | |||
+ | <math>\Rightarrow \frac{3(n^{2}-4+13)}{n+2} \in Z</math> | ||
+ | |||
+ | <math>\Rightarrow \frac{3(n+2)(n-2)+39}{n+2} \in Z</math> | ||
+ | |||
+ | <math>\Rightarrow 3(n+2)+\frac{39}{n+2} \in Z</math> | ||
+ | |||
+ | Since n+2 is positive,the positive factor of 39 are 1, 3, 13 and 39 | ||
+ | |||
+ | So x=-1, 1, 11 and 37 | ||
+ | |||
+ | Since x is positive, so x=1, 11 and 37 | ||
+ | |||
+ | 1+11+37= <math>\framebox{49}</math> is the correct answer | ||
+ | |||
+ | ~Tonyttian [https://artofproblemsolving.com/wiki/index.php/User:Tonyttian] |
Revision as of 21:03, 13 February 2025
Problem
Find the sum of all positive integers such that
divides the product
.
Solution 1
Since n+2 is positive,the positive factor of 39 are 1, 3, 13 and 39
So x=-1, 1, 11 and 37
Since x is positive, so x=1, 11 and 37
1+11+37= is the correct answer
~Tonyttian [1]