Difference between revisions of "Lentarot"
m (Proposed for deletion) |
|||
(3 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | {{delete|not in user namespace, move [[User:Lentarot|here]]}} | ||
==HELLO GUYS== | ==HELLO GUYS== | ||
Line 19: | Line 20: | ||
<math>dz=iae^{i\theta}d\theta</math> | <math>dz=iae^{i\theta}d\theta</math> | ||
− | <math>\oint_{\gamma}f(z)dz = \sum_{k=1}^{n}\sum_{j=-\infty}^{\infty}C_n\int_{0}^{2\pi} (ae^{i\theta})^ | + | <math>\oint_{\gamma}f(z)dz = \sum_{k=1}^{n}\sum_{j=-\infty}^{\infty}C_n\int_{0}^{2\pi} (ae^{i\theta})^j iae^{i\theta}d\theta</math> |
− | <math>\oint_{\gamma}f(z)dz = \sum_{k=1}^{n}\sum_{j=-\infty}^{\infty}C_n ia^{ | + | <math>\oint_{\gamma}f(z)dz = \sum_{k=1}^{n}\sum_{j=-\infty}^{\infty}C_n ia^{j+1} \int_{0}^{2\pi}e^{i(j+1)\theta}d\theta</math> |
− | <math>\oint_{\gamma}f(z)dz = \sum_{k=1}^{n}\sum_{j=-\infty}^{\infty}C_n ia^{ | + | <math>\oint_{\gamma}f(z)dz = \sum_{k=1}^{n}\sum_{j=-\infty}^{\infty}C_n ia^{j+1} [\frac{1}{i(n+1)}e^{i(j+1)\theta}]_{0}^{2\pi}</math> |
<math> \int_{0}^{2\pi}e^{i(n+1)\theta}d\theta =\begin{cases}0 & n\neq -1\\2\pi i & n=-1\end{cases} </math> | <math> \int_{0}^{2\pi}e^{i(n+1)\theta}d\theta =\begin{cases}0 & n\neq -1\\2\pi i & n=-1\end{cases} </math> | ||
− | <math>\oint_{\gamma}f(z)dz = \sum_{k=1}^{n}2\pi i | + | <math>\oint_{\gamma}f(z)dz = \sum_{k=1}^{n}2\pi i C_{-1}</math> |
<cmath>\boxed{\oint_{\gamma}f(z)dz = 2\pi i\sum_{k=1}^{n}res(f(z),\alpha_{k})}</cmath> | <cmath>\boxed{\oint_{\gamma}f(z)dz = 2\pi i\sum_{k=1}^{n}res(f(z),\alpha_{k})}</cmath> | ||
− | |||
− | |||
− | |||
− | |||
==contributions== | ==contributions== | ||
[[2016 AIME I Problems/Problem 10]] Solution 4 | [[2016 AIME I Problems/Problem 10]] Solution 4 |
Revision as of 16:01, 30 January 2025
This article has been proposed for deletion. The reason given is: not in user namespace, move here.
Sysops: Before deleting this article, please check the article discussion pages and history. |
HELLO GUYS
こんにちは!
Hello
contributions
2016 AIME I Problems/Problem 10 Solution 4