Difference between revisions of "Ostrowski's criterion"
(Ostrowski's Criterion) |
m (better notation) |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
Ostrowski's Criterion states that: | Ostrowski's Criterion states that: | ||
− | + | Let <math>f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0\in \mathbb{Z}[x]</math>. If <math>a_0</math> is a prime and | |
<cmath>|a_0|>|a_n|+|a_{n-1}|+\cdots+|a_1|</cmath> | <cmath>|a_0|>|a_n|+|a_{n-1}|+\cdots+|a_1|</cmath> | ||
then <math>f(x)</math> is irreducible. | then <math>f(x)</math> is irreducible. | ||
− | Proof | + | ==Proof== |
+ | Let <math>\phi</math> be a root of <math>f(x)</math>. If <math>|\phi|\leq 1</math>, then | ||
<cmath>|a_0|=|a_1\phi+\cdots+a_n\phi^n|\leq |a_1|+\cdots+|a_n|</cmath> | <cmath>|a_0|=|a_1\phi+\cdots+a_n\phi^n|\leq |a_1|+\cdots+|a_n|</cmath> | ||
a contradiction. Therefore, <math>|\phi|>1</math>. | a contradiction. Therefore, <math>|\phi|>1</math>. | ||
− | Suppose <math>f(x)=g(x)h(x)</math>. Since <math>f(0)=a_0</math>, one of <math>g(0)</math> and <math>h(0)</math> is 1. WLOG, assume <math>g(0)=1</math>. Then, let <math> | + | Suppose <math>f(x)=g(x)h(x)</math>. Since <math>f(0)=a_0</math>, one of <math>g(0)</math> and <math>h(0)</math> is 1. WLOG, assume <math>g(0)=1</math>. Then, let <math>b</math> be the leading coefficient of <math>g(x)</math>. If <math>\phi_1,\phi_2,\cdots,\phi_r</math> are the roots of <math>g(x)</math>, then <math>1<|\phi_1\phi_2\cdots \phi_n|=\frac{1}{|b|}\leq 1</math>. This is a contradiction, so <math>f(x)</math> is irreducible. |
{{stub}} | {{stub}} |
Latest revision as of 11:27, 21 January 2025
Ostrowski's Criterion states that:
Let . If is a prime and then is irreducible.
Proof
Let be a root of . If , then a contradiction. Therefore, .
Suppose . Since , one of and is 1. WLOG, assume . Then, let be the leading coefficient of . If are the roots of , then . This is a contradiction, so is irreducible.
This article is a stub. Help us out by expanding it.