Difference between revisions of "2016 AMC 8 Problems/Problem 11"

(Solutions)
(Solutions)
 
(21 intermediate revisions by 11 users not shown)
Line 5: Line 5:
 
<math>\textbf{(A) }5\qquad\textbf{(B) }7\qquad\textbf{(C) }9\qquad\textbf{(D) }11\qquad \textbf{(E) }12</math>
 
<math>\textbf{(A) }5\qquad\textbf{(B) }7\qquad\textbf{(C) }9\qquad\textbf{(D) }11\qquad \textbf{(E) }12</math>
  
==Solutions==
+
==Video Solution (CREATIVE THINKING!!!)==
===Solution 1 eee===
+
https://youtu.be/G_0KQJhZKGY
  
We can write the two digit number in the form of <math>10a+b</math>; reverse of <math>10a+b</math> is <math>10b+a</math>. The sum of those numbers is:
+
~Education, the Study of Everything
<cmath>(10a+b)+(10b+a)=132</cmath><cmath>11a+11b=132</cmath><cmath>a+b=12</cmath>
 
We can use brute force to find order pairs <math>(a,b)</math> such that <math>a+b=12</math>. Since <math>a</math> and <math>b</math> are both digits, both <math>a</math> and <math>b</math> have to be integers less than <math>10</math>. Thus our ordered pairs are <math>(3,9); (4,8); (5,7); (6,6); (7,5); (8,4); (9,3)</math> or <math>\boxed{\textbf{(B)} 7}</math> ordered pairs.
 
  
===Solution 2 -SweetMango77===
+
==Video Solution==
Since the numbers are “mirror images,” their average has to be <math>\frac{132}{2}=66</math>. The highest possible value for the tens digit is <math>9</math> because it is a two-digit number. <math>9-6=3</math>, and <math>6-3=3</math>, so our lowest tens digit is <math>3</math>. The numbers between <math>9</math> and <math>3</math> inclusive is <math>9-3+1=\boxed{\text{(B)}\;7}</math> total possibilities.
+
https://youtu.be/lbfbJea43ldk
 +
 
 +
~savannahsolver
  
 
==See Also==
 
==See Also==

Latest revision as of 10:29, 21 January 2025

Problem

Determine how many two-digit numbers satisfy the following property: when the number is added to the number obtained by reversing its digits, the sum is $132.$

$\textbf{(A) }5\qquad\textbf{(B) }7\qquad\textbf{(C) }9\qquad\textbf{(D) }11\qquad \textbf{(E) }12$

Video Solution (CREATIVE THINKING!!!)

https://youtu.be/G_0KQJhZKGY

~Education, the Study of Everything

Video Solution

https://youtu.be/lbfbJea43ldk

~savannahsolver

See Also

2016 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png