Difference between revisions of "2019 AMC 8 Problems/Problem 15"
(→Video Solution by Math-X (First fully understand the problem!!!)) |
(→Problem) |
||
(One intermediate revision by the same user not shown) | |||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | On a beach <math> | + | On a beach <math>500</math> people are wearing sunglasses and <math>35</math> people are wearing caps. Some people are wearing both sunglasses and caps. If one of the people wearing a cap is selected at random, the probability that this person is also wearing sunglasses is <math>\frac{2}{5}</math>. If instead, someone wearing sunglasses is selected at random, what is the probability that this person is also wearing a cap? |
<math>\textbf{(A) }\frac{14}{85}\qquad\textbf{(B) }\frac{7}{25}\qquad\textbf{(C) }\frac{2}{5}\qquad\textbf{(D) }\frac{4}{7}\qquad\textbf{(E) }\frac{7}{10}</math> | <math>\textbf{(A) }\frac{14}{85}\qquad\textbf{(B) }\frac{7}{25}\qquad\textbf{(C) }\frac{2}{5}\qquad\textbf{(D) }\frac{4}{7}\qquad\textbf{(E) }\frac{7}{10}</math> | ||
Line 19: | Line 19: | ||
~ cxsmi | ~ cxsmi | ||
− | |||
− | |||
==Video Solution by EzLx== | ==Video Solution by EzLx== |
Latest revision as of 06:26, 21 January 2025
Problem
On a beach people are wearing sunglasses and people are wearing caps. Some people are wearing both sunglasses and caps. If one of the people wearing a cap is selected at random, the probability that this person is also wearing sunglasses is . If instead, someone wearing sunglasses is selected at random, what is the probability that this person is also wearing a cap?
Solution 1
The number of people wearing caps and sunglasses is . So then, 14 people out of the 50 people wearing sunglasses also have caps.
Solution 2
Let be the event that a randomly selected person is wearing sunglasses, and let be the event that a randomly selected person is wearing a cap. We can write in two ways: or . Suppose there are people in total. Then and Additionally, we know that the probability that someone is wearing sunglasses given that they wear a cap is , so . We let , which is the quantity we want to find, be equal to . Substituting in, we get
Note: This solution makes use of the dependent events probability formula, , where represents the probability that occurs given that has already occurred and represents the probability of both and happening.
~ cxsmi
Video Solution by EzLx
~EzLx CookeMonster SirCookies
Video Solution
https://youtu.be/6xNkyDgIhEE?t=250pih-jsm
See Also
2019 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Problem 16 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.